Polyurethane (PU) can be used as a road material binder, and its mechanical properties, durability, temperature stability, and other road performance metrics are good. However, the interlayer bonding between PU mixtures and asphalt mixtures is poor. The influence of the pavement structure, interlayer treatment scheme, load, and environmental factors on the interlayer shear characteristics of PU mixture composite pavement is analysed. Further, dynamic modulus, Hamburg rutting, accelerated loading, and inclined shear tests were conducted, and the typical PU mixture pavement shear stress was calculated. The interlaminar shear stress of double layer PU mixture pavement, polyurethane–asphalt composite pavement, and typical asphalt pavement were calculated. The results showed that the PU mixture has a low rutting deformation rate, stable mechanical properties, and strong resistance to the coupled action of temperature, water, and loading. The double-layer PU mixture structure has good water-temperature stability and fatigue resistance; however, freeze–thaw and accelerated loading cause great damage to the double-layer PU mixture structure. The residual shear strength ratio after freeze–thaw cycles and accelerated loading is only 50.3% and 35.6%, respectively, while the influence on the double-layer asphalt mixture structure is less. The theoretical calculation results of different pavement structures show that when the temperature increases from 10 °C to 50 °C, the interlaminar shear stress of polyurethane–asphalt composite pavement increases by about 20%. Additionally, the shear stress of pavement PU mixture pavement and typical asphalt pavement is mainly affected by load, and the temperature changes have an obvious effect on the interlayer shear stress of polyurethane–asphalt composite pavement. The calculated maximum shear stress of the three pavement structures with different working conditions is less than the interlaminar shear strength measured by the inclined shear test, indicating that the interlaminar treatment scheme of composite specimens can meet the shear resistance requirements of the three typical pavement structure types.
A polyurethane mixture (PUM) is an energy-saving and emission-reducing pavement material with excellent temperature stability; however, the fatigue properties and fatigue damage models of PUM still require further research. Therefore, four-point bending static load tests, fatigue tests, and digital speckle correlation method (DSCM) tests with different load levels of PUM and styrene butadiene styrene (SBS)-modified asphalt mixture (SMA) were carried out. The fatigue life, stiffness, midspan deflection, and maximum tensile strain were obtained and compared. The fatigue damage factor calculation method of PUM based on stiffness degradation was proposed, and the fatigue damage function of PUM at different load levels was fitted. The results show that the fatigue life of PUM was much larger than that of SMA, and the static loading failure and fatigue failure modes of PUM were both brittle. The fatigue damage of PUM exhibits an obvious three-stage damage law: the rapid development stage (accounting for about 10–20% of the fatigue life), the deformation stability expansion stage (accounting for about 70–80% of the fatigue life), and the instability development stage (accounting for about 10–20% of the fatigue life). The fatigue damage factors (DB) were calculated based on stiffness, according to DB=EI0−EInrEI0−EINr, and the fatigue damage functions of PUM were fitted based on the stiffness degradation, according to fnN=1−1−(n/N)a(1−n/N)b. The fatigue damage fitting curves have good correlation with the calculation results of the damage factor based on test data, which can predict the stiffness degradation of PUM at different load levels. The results can help further the understanding of the fatigue characteristics and damage mechanism of PUM, which will provide theoretical support for the application of PUM in pavement structures.
Sensor optimization is an important part of Structural Health Monitoring System (SHM), as the use of different number of modes and the number of sensors have a great impact on the results of sensor optimization, reasonable modality number plays a key role in sensor optimization. But the selection of sensor number and modality mostly depends on experience and economy. In this paper, the method of determining the number of target modes based on modal information incremental matrix of the covariance matrix is studied, and the sensor optimization is carried out by taking a laboratory cable-stayed bridge model as an example, and the results are compared with the method of determining the number of target modes based on the rate of change of the Fisher information matrix. The results show that the method of modal information incremental matrix based on the covariance matrix can accurately calculate the number of target modes required for the optimization of cable-stayed bridge sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.