Tumor-associated macrophages (TAMs) are the most abundant inflammatory infiltrates in the tumor microenvironment and contribute to lymph node (LN) metastasis. However, the precise mechanisms of TAMs-induced LN metastasis remain largely unknown. Herein, we identify a long noncoding RNA, termed Lymph Node Metastasis Associated Transcript 1 (LNMAT1), which is upregulated in LN-positive bladder cancer and associated with LN metastasis and prognosis. Through gain and loss of function approaches, we find that LNMAT1 promotes bladder cancer-associated lymphangiogenesis and lymphatic metastasis. Mechanistically, LNMAT1 epigenetically activates CCL2 expression by recruiting hnRNPL to CCL2 promoter, which leads to increased H3K4 tri-methylation that ensures hnRNPL binding and enhances transcription. Furthermore, LNMAT1-induced upregulation of CCL2 recruits macrophages into the tumor, which promotes lymphatic metastasis via VEGF-C excretion. These findings provide a plausible mechanism for LNMAT1-modulated tumor microenvironment in lymphatic metastasis and suggest that LNMAT1 may represent a potential therapeutic target for clinical intervention in LN-metastatic bladder cancer.
Purpose: Chemoresistance and tumor relapse are the leading cause of deaths in bladder cancer patients. Bladder cancer stem cells (BCSCs) have been reported to contribute to these pathologic properties. However, the molecular mechanisms underlying their self-renewal and chemoresistance remain largely unknown. In the current study, a novel lncRNA termed Low expressed in Bladder Cancer Stem cells (lnc-LBCS) has been identified and explored in BCSCs.Experimental Design: Firstly, we establish BCSCs model and explore the BCSCs-associated lncRNAs by transcriptome microarray. The expression and clinical features of lnc-LBCS are analyzed in three independent large-scale cohorts. The functional role and mechanism of lnc-LBCS are further investigated by gain-and loss-of-function assays in vitro and in vivo.Results: Lnc-LBCS is significantly downregulated in BCSCs and cancer tissues, and correlates with tumor grade, chemo-therapy response, and prognosis. Moreover, lnc-LBCS markedly inhibits self-renewal, chemoresistance, and tumor initiation of BCSCs both in vitro and in vivo. Mechanistically, lnc-LBCS directly binds to heterogeneous nuclear ribonucleoprotein K (hnRNPK) and enhancer of zeste homolog 2 (EZH2), and serves as a scaffold to induce the formation of this complex to repress SRY-box 2 (SOX2) transcription via mediating histone H3 lysine 27 tri-methylation. SOX2 is essential for self-renewal and chemoresistance of BCSCs, and correlates with the clinical severity and prognosis of bladder cancer patients.Conclusions: As a novel regulator, lnc-LBCS plays an important tumor-suppressor role in BCSCs' self-renewal and chemoresistance, contributing to weak tumorigenesis and enhanced chemosensitivity. The lnc-LBCS-hnRNPK-EZH2-SOX2 regulatory axis may represent a therapeutic target for clinical intervention in chemoresistant bladder cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.