Energy-efficient simultaneous localization and mapping (SLAM) is crucial for mobile robots exploring unknown environments. The mammalian brain solves SLAM via a network of specialized neurons, exhibiting asynchronous computations and event-based communications, with very low energy consumption. We propose a brain-inspired spiking neural network (SNN) architecture that solves the unidimensional SLAM by introducing spike-based reference frame transformation, visual likelihood computation, and Bayesian inference. We integrated our neuromorphic algorithm to Intel's Loihi neuromorphic processor, a non-Von Neumann hardware that mimics the brain's computing paradigms. We performed comparative analyses for accuracy and energy-efficiency between our neuromorphic approach and the GMapping algorithm, which is widely used in small environments. Our Loihi-based SNN architecture consumes 100 times less energy than GMapping run on a CPU while having comparable accuracy in head direction localization and map-generation. These results pave the way for scaling our approach towards active-SLAM alternative solutions for Loihi-controlled autonomous robots.
It is true that the "best" neural network is not necessarily the one with the most "brain-like" behavior. Understanding biological intelligence, however, is a fundamental goal for several distinct disciplines. Translating our understanding of intelligence to machines is a fundamental problem in robotics. Propelled by new advancements in Neuroscience, we developed a spiking neural network (SNN) that draws from mounting experimental evidence that a number of individual neurons is associated with spatial navigation. By following the brain's structure, our model assumes no initial all-to-all connectivity, which could inhibit its translation to a neuromorphic hardware, and learns an uncharted territory by mapping its identified components into a limited number of neural representations, through spike-timing dependent plasticity (STDP). In our ongoing effort to employ a bioinspired SNN-controlled robot to real-world spatial mapping applications, we demonstrate here how an SNN may robustly control an autonomous robot in mapping and exploring an unknown environment, while compensating for its own intrinsic hardware imperfections, such as partial or total loss of visual input.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.