Background: Endoscopic carpal tunnel release (ECTR) and open carpal tunnel release (OCTR) both have advantages and disadvantages for the treatment of carpal tunnel syndrome (CTS). We compared the effectiveness and safety of ECTR and OCTR based on evidence from a high-level randomized controlled trial. Methods: We comprehensively searched PubMed, EMBASE, Cochrane Library, Web of Science, and Medline to identify relevant articles published until August 2019. Data regarding operative time, grip strength, Boston Carpal Tunnel Questionnaire scores, digital sensation, patient satisfaction, key pinch strength, return to work time, and complications were extracted and compared. All mean differences (MD) and odds ratios (OR) were expressed as ECTR relative to OCTR. Results: Our meta-analysis contained twenty-eight studies. ECTR was associated with significantly higher satisfaction rates (MD, 3.13; 95% confidence interval [CI], 1.43 to 4.82; P = 0.0003), greater key pinch strengths (MD, 0.79 kg; 95% CI, 0.27 to 1.32; P = 0.003), earlier return to work times (MD, − 7.25 days; 95% CI, − 14.31 to − 0.19; P = 0.04), higher transient nerve injury rates (OR, 4.87; 95% CI, 1.37 to 17.25; P = 0.01), and a lower incidence of scarrelated complications (OR, 0.20; 95% CI, 0.07 to 0.59; P = 0.004). The permanent nerve injury showed no significant differences between the two methods (OR, 1.93; 95% CI, 0.58 to 6.40; P = 0.28). Conclusions: Overall, evidence from randomized controlled trials indicates that ECTR results in better recovery of daily life functions compared to OCTR, as revealed by higher satisfaction rates, greater key pinch strengths, earlier return to work times, and fewer scar-related complications. Our findings suggest that patients with CTS can be effectively managed with ECTR.
DNA damage triggers a network of signaling events that leads to cell cycle arrest or apoptosis. This DNA damage response acts as a mechanism to prevent cancer development. It has been reported that fatty acids (FAs) synthesis is increased in many human tumors while inhibition of fatty acid synthase (FASN) could suppress tumor growth. Here we report that saturated fatty acids (SFAs) play a negative role in DNA damage response. Palmitic acid, as well as stearic acid and myristic acid, compromised the induction of p21 and Bax expression in response to double stranded breaks and ssDNA, while inhibition or knockdown of FASN enhanced these cellular events. SFAs appeared to regulate p21 and Bax expression via Atr-p53 dependent and independent pathways. These effects were only observed in primary mouse embryonic fibroblasts and osteoblasts, but not in immortalized murine NIH3T3, or transformed HCT116 and MCF-7 cell lines. Accordingly, SFAs showed some positive effects on proliferation of MEFs in response to DNA damage. These results suggest that SFAs, by negatively regulating the DNA damage response pathway, might promote cell transformation, and that increased synthesis of SFAs in precancer/cancer cells might contribute to tumor progression and drug resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.