Sonodynamic therapy (SDT) has shown great potential as an approach for cancer treatment, and hyperthermotherapy (HT) is also a promising cancer therapy. Here, we investigate whether HT could improve the efficacy of SDT and to make a preliminary exploration on potential mechanism. Xenograft tumor was established in nude mice model, and SNB19 and U87MG glioma cell lines were utilized for in vitro experiment. Alamar blue assay was performed to assess cell viability. Optical microscope was used to characterize the morphology changes of the glioma cells induced by SDT and HT treatments. Apoptotic rate, mitochondrial membrane potential (MMP), and intracellular production of reactive oxygen species (ROS) were examined by flow cytometer. The cell apoptosis of tumor tissues were detected by TUNEL assay. Furthermore, the expression of apoptosis-related proteins was detected with Western blot in vitro and immunohistochemistry in vivo. SDT plus HT group could significantly reduce the cell viability with circular-cell morphological change, compared with SDT group, and cell viability was decreased depending on raise of 5-ALA concentration, ultrasound exposure time, and temperature. The results also indicate that HT increased a conspicuous apoptosis, ROS production, and a remarkable loss in MMP induced by 5-ALA-SDT in vitro. Meanwhile, our data also demonstrated that the combined treatment could significantly induce apoptosis and delay tumor growth in vivo. Furthermore, in both in vitro and in vivo experiments, SDT plus HT group expressed significantly higher protein levels of Bax and cleaved caspase-3, 8, and 9 compared to SDT, HT, and control groups and significantly lower protein level of bcl-2 than the other three groups, while the expression of these proteins was unchanged between HT and control groups. HT may provide an important promotion on 5-ALA-SDT and further propose that SDT in combination with HT is a new potential application for the treatment of human glioma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.