We introduce a simple but efficient electronic fitness function (EFF) that describes the electronic aspect of the thermoelectric performance. This EFF finds materials that overcome the inverse relationship between σ and S based on the complexity of the electronic structures regardless of specific origin (e.g., isosurface corrugation, valley degeneracy, heavy-light bands mixture, valley anisotropy or reduced dimensionality). This function is well suited for application in high throughput screening. We applied this function to 75 different thermoelectric and potential thermoelectric materials including full-and half-Heuslers, binary semiconductors and Zintl phases. We find an efficient screening using this transport function. The EFF identifies known high performance p-and n-type Zintl phases and half-Heuslers. In addition, we find some previously unstudied phases with superior EFF. arXiv:1708.04499v2 [cond-mat.mtrl-sci]
The electronic fitness function was not given in the stated Système International units. The values should be multipled by 4.485×10 −32 to obtain the stated units. The discussion, conclusions, and rankings of the materials are unchanged.
In order to elucidate pressure-induced second superconducting phase (SC-II) in AxFe2−ySe2 (A = K, Rb, Cs, and Tl) having an intrinsic phase separation, we perform a detailed high-pressure magnetotransport study on the isoelectronic, phase-pure (Li1−xFex)OHFe1−ySe single crystals. Here we show that its ambient-pressure superconducting phase (SC-I) with a critical temperature Tc ≈ 40 K is suppressed gradually to below 2 K and an SC-II phase emerges above Pc ≈ 5 GPa with Tc increasing progressively to above 50 K up to 12.5 GPa. Our high-precision resistivity data uncover a sharp transition of the normal state from Fermi liquid for SC-I to non-Fermi liquid for SC-II phase. In addition, the reemergence of high-Tc SC-II is found to accompany with a concurrent enhancement of electron carrier density. Without structural transition below 10 GPa, the observed SC-II with enhanced carrier density should be ascribed to an electronic origin presumably associated with pressure-induced Fermi surface reconstruction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.