A new three-dimensional chaotic system with fan-shaped Poincaré maps is proposed. Based on merely six terms, the system is easy to implement. Its dynamic behaviors, such as equilibrium points, Poincaré maps, power spectra, Lyapunov exponent spectra, bifurcation diagrams and forming mechanism, are analyzed theoretically and numerically. Results of theoretical analyses and numerical simulations indicate that the proposed system possesses complex chaotic attractors. Its equilibrium points are unstable, and the system can keep chaotic when its parameters vary in a wide domain. Furthermore, circuit simulations of the system are discussed. The results of numerical simulations and circuit simulations coincide very well. By virtue of its complex dynamic behaviors and widerange parameters, the system can be adopted in some application fields where wide-range parameters and complex behaviors are usually preferred, such as secure communication, data encryption, information hiding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.