This study describes variation patterns in the constant frequency of echolocation calls emitted at rest and when not flying ͑"resting frequency" RF͒ of the least horseshoe bat, Rhinolophus pusillus, on a broad geographical scale and in response to local climatic variables. Significant differences in RF were observed among populations throughout the species range in Mainland China, and this variation was positively and significantly related to climate conditions, especially environmental humidity, but the variability was only weakly associated with geographical distance. Sex dimorphism in the RF of R. pusillus may imply that female and male might keep their frequencies within a narrow range for sex recognition. Moreover, bats adjusted resting frequency to humidity, which may imply partitioning diet by prey size or the influence of rainfall noise. The results indicate that bats adjust echolocation call frequency to adapt to environmental conditions. Therefore, environmental selection shape the diversity of echolocation call structure of R. pusillus in geographically separated populations, and conservation efforts should focus on changes in local climate and effects of environmental noise.
Predicting species' fates following the introduction of a novel pathogen is a significant and growing problem in conservation. Comparing disease dynamics between introduced and endemic regions can offer insight into which naive hosts will persist or go extinct, with disease acting as a filter on host communities. We examined four hypothesized mechanisms for host–pathogen persistence by comparing host infection patterns and environmental reservoirs for
Pseudogymnoascus destructans
(the causative agent of white-nose syndrome) in Asia, an endemic region, and North America, where the pathogen has recently invaded. Although colony sizes of bats and hibernacula temperatures were very similar, both infection prevalence and fungal loads were much lower on bats and in the environment in Asia than North America. These results indicate that transmission intensity and pathogen growth are lower in Asia, likely due to higher host resistance to pathogen growth in this endemic region, and not due to host tolerance, lower transmission due to smaller populations, or lower environmentally driven pathogen growth rate. Disease filtering also appears to be favouring initially resistant species in North America. More broadly, determining the mechanisms allowing species persistence in endemic regions can help identify species at greater risk of extinction in introduced regions, and determine the consequences for disease dynamics and host–pathogen coevolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.