This study investigated the potential effect of vacuum annealing on the microstructure and hot salt corrosion behavior of CoNiCrAlY/YSZ/LaMgAl11O19 (LMA) double-ceramic coatings. A hot-salt corrosion test revealed that sprayed coatings exhibited an unsatisfactory anti-corrosion performance, and the LMA layer underwent severe fracture and corrosion degradation. Vacuum annealing induced a prominent recrystallization of the amorphous phase in LMA layer, triggering severe volume shrinkage and microcrack initiation. The recrystallization and volume shrinkage of the LMA layer were aggravated by an increase in the annealing temperature. The annealed coating with a higher fraction of the LaMA phase showed superior resistance to hot-salt corrosion. However, the salt mixture diffused simultaneously along the microcracks and eventually eroded into the YSZ layer. These results confirmed that vacuum annealing significantly enhanced the hot-salt corrosion resistance of the LMA layer. However, it deteriorated the barrier effect of the salt mixture through microcrack formation.
A promising ion-beam-assisted deposition (IBAD) method was developed to improve the salt-water corrosion resistance of NiCoCrAlY-AlSiY coating. During hot salt-water exposure, hydrochloric acid (HCl) was produced when chloride salt, water, and metal oxide reacted with each other, while HCl was also produced when chlorine reacted with water. The as-deposited AlSiY layer exhibited a loose texture accompanied by numerous pore defects, which triggered the multi-scale diffusion of HCl, resulting in the large-area corrosion degradation of the coating texture and the rapid diffusion of the NiCoCrAlY bonding layer. By contrast, the ion-beam-assisted AlSiY layer showed a dense texture that effectively inhibited the inner diffusion of HCl and suppressed the corrosion reactions as well as the diffusion of the NiCoCrAlY bonding layer. The current results confirmed the significant potential of IBAD in inhibiting corrosion damage and diffusion of thermal protective coatings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.