Abstract. To tackle the problem of severe air pollution, China has implemented active clean air policies in recent years. As a consequence, the emissions of major air pollutants have decreased and the air quality has substantially improved. Here, we quantified China's anthropogenic emission trends from 2010 to 2017 and identified the major driving forces of these trends by using a combination of bottom-up emission inventory and index decomposition analysis (IDA) approaches. The relative change rates of China's anthropogenic emissions during 2010–2017 are estimated as follows: −62 % for SO2, −17 % for NOx, +11 % for nonmethane volatile organic compounds (NMVOCs), +1 % for NH3, −27 % for CO, −38 % for PM10, −35 % for PM2.5, −27 % for BC, −35 % for OC, and +16 % for CO2. The IDA results suggest that emission control measures are the main drivers of this reduction, in which the pollution controls on power plants and industries are the most effective mitigation measures. The emission reduction rates markedly accelerated after the year 2013, confirming the effectiveness of China's Clean Air Action that was implemented since 2013. We estimated that during 2013–2017, China's anthropogenic emissions decreased by 59 % for SO2, 21 % for NOx, 23 % for CO, 36 % for PM10, 33 % for PM2.5, 28 % for BC, and 32 % for OC. NMVOC emissions increased and NH3 emissions remained stable during 2010–2017, representing the absence of effective mitigation measures for NMVOCs and NH3 in current policies. The relative contributions of different sectors to emissions have significantly changed after several years' implementation of clean air policies, indicating that it is paramount to introduce new policies to enable further emission reductions in the future.
From 2013 to 2017, with the implementation of the toughest-ever clean air policy in China, significant declines in fine particle (PM2.5) concentrations occurred nationwide. Here we estimate the drivers of the improved PM2.5 air quality and the associated health benefits in China from 2013 to 2017 based on a measure-specific integrated evaluation approach, which combines a bottom-up emission inventory, a chemical transport model, and epidemiological exposure-response functions. The estimated national population–weighted annual mean PM2.5 concentrations decreased from 61.8 (95%CI: 53.3–70.0) to 42.0 µg/m3 (95% CI: 35.7–48.6) in 5 y, with dominant contributions from anthropogenic emission abatements. Although interannual meteorological variations could significantly alter PM2.5 concentrations, the corresponding effects on the 5-y trends were relatively small. The measure-by-measure evaluation indicated that strengthening industrial emission standards (power plants and emission-intensive industrial sectors), upgrades on industrial boilers, phasing out outdated industrial capacities, and promoting clean fuels in the residential sector were major effective measures in reducing PM2.5 pollution and health burdens. These measures were estimated to contribute to 6.6- (95% CI: 5.9–7.1), 4.4- (95% CI: 3.8–4.9), 2.8- (95% CI: 2.5–3.0), and 2.2- (95% CI: 2.0–2.5) µg/m3 declines in the national PM2.5 concentration in 2017, respectively, and further reduced PM2.5-attributable excess deaths by 0.37 million (95% CI: 0.35–0.39), or 92% of the total avoided deaths. Our study confirms the effectiveness of China’s recent clean air actions, and the measure-by-measure evaluation provides insights into future clean air policy making in China and in other developing and polluting countries.
<p><strong>Abstract.</strong> To tackle the problem of severe air pollution, China has implemented active clean air policies in recent years. As a consequence, the emissions of major air pollutants have decreased and the air quality has substantially improved. Here, we quantified China's anthropogenic emission trends from 2010&#8211;2017 and identified the major driving forces of these trends by using a combination of bottom-up emission inventory and Index Decomposition Analysis (IDA) approaches. The relative change rates of China's anthropogenic emissions during 2010&#8211;2017 are estimated as follows: &#8722;62&#8201;% for SO<sub>2</sub>, &#8722;17&#8201;% for NO<sub>x</sub>, +11&#8201;% for NMVOC, +1&#8201;% for NH<sub>3</sub>, &#8722;27&#8201;% for CO, &#8722;38&#8201;% for PM<sub>10</sub>, &#8722;35&#8201;% for PM<sub>2.5</sub>, &#8722;27&#8201;% for BC, &#8722;35&#8201;% for OC, and +18&#8201;% for CO<sub>2</sub>. The IDA results suggest that emission control measures are the main drivers of this reduction, in which the pollution controls on power plants and industries are the most effective mitigation measures. The emission reduction rates markedly accelerated after the year 2013, confirming the effectiveness of China's Clean Air Action that was implemented in 2013. We estimated that during 2013&#8211;2017, China's anthropogenic emissions decreased by 59&#8201;% for SO<sub>2</sub>, 21&#8201;% for NO<sub>x</sub>, 23&#8201;% for CO, 36&#8201;% for PM<sub>10</sub>, 33&#8201;% for PM<sub>2.5</sub>, 28&#8201;% for BC, and 32&#8201;% for OC. NMVOC emissions increased by 11&#8201;% and NH<sub>3</sub> emissions remained stable from 2010&#8211;2017, representing the absence of effective mitigation measures for NMVOC and NH<sub>3</sub> in current policies. The relative contributions of different sectors to emissions have significantly changed after several years' implementation of clean air policies, indicating that it is paramount to introduce new policies to enable further emission reductions in the future.</p>
Millions of people die every year from diseases caused by exposure to outdoor air pollution1, 2, 3, 4, 5. Some studies have estimated premature mortality related to local sources of air pollution6, 7, but local air quality can also be affected by atmospheric transport of pollution from distant sources8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18. International trade is contributing to the globalization of emission and pollution as a result of the production of goods (and their associated emissions) in one region for consumption in another region14, 19, 20, 21, 22. The effects of international trade on air pollutant emissions23, air quality14 and health24 have been investigated regionally, but a combined, global assessment of the health impacts related to international trade and the transport of atmospheric air pollution is lacking. Here we combine four global models to estimate premature mortality caused by fine particulate matter (PM2.5) pollution as a result of atmospheric transport and the production and consumption of goods and services in different world regions. We find that, of the 3.45 million premature deaths related to PM2.5 pollution in 2007 worldwide, about 12 per cent (411,100 deaths) were related to air pollutants emitted in a region of the world other than that in which the death occurred, and about 22 per cent (762,400 deaths) were associated with goods and services produced in one region for consumption in another. For example, PM2.5 pollution produced in China in 2007 is linked to more than 64,800 premature deaths in regions other than China, including more than 3,100 premature deaths in western Europe and the USA; on the other hand, consumption in western Europe and the USA is linked to more than 108,600 premature deaths in China. Our results reveal that the transboundary health impacts of PM2.5 pollution associated with international trade are greater than those associated with long-distance atmospheric pollutant transport
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.