Reverse-time migration (RTM) exhibits great superiority over other imaging algorithms in handling steeply dipping structures and complicated velocity models. However, low-frequency, high-amplitude noises commonly seen in a typical RTM image have been one of the major concerns because they can seriously contaminate the signals in the image if they are not handled properly. We propose a new imaging condition to effectively and efficiently eliminate these specific noises from the image. The method works by first decomposing the source and receiver wavefields to their one-way propagation components, followed by applying a correlation-based imaging condition to the appropriate combinations of the decomposed wavefields. We first give the physical explanation of the principle of such noises in the conventional RTM image. Then we provide the detailed mathematical theory for the new imaging condition. Finally, we propose an efficient scheme for its numerical implementation. It replaces the computationally intensive decomposition with the cost-effective Hilbert transform, which significantly improves the efficiency of the imaging condition. Applications to various synthetic and real data sets demonstrate that this new imaging condition can effectively remove the undesired low-frequency noises in the image.
One-way wave operators are powerful tools for forward modeling and inversion. Their implementation, however, involves introduction of the square-root of an operator as a pseudo-differential operator. Furthermore, a simple factoring of the wave operator produces one-way wave equations that yield the same traveltimes of the full wave equation, but do not yield accurate amplitudes except for homogeneous media and for almost all points in heterogeneous media. Here, we present augmented one-way wave equations. We show that these equations yield solutions for which the leading order asymptotic amplitude as well as the traveltime agree with satisfy the same differential equations as do the corresponding functions for the full wave equation. Exact representations of the square-root operator appearing in these differential equations are elusive, except in cases in which the heterogeneity of the medium is independent of the transverse-spatial variables. Here, singling out depth as the preferred direction of propagation, we introduce a representation of the square-root operator as an integral in which a rational function of the transverse Laplacian appears in the integrand. This allows us to carry out explicit asymptotic analysis of the resulting one-way wave equations. To do this, we introduce an auxiliary function that satisfies a lower dimensional wave equation in transverse-spatial variables only. We prove that ray theory for these one-way wave equations leads to one-way eikonal equations and the correct leading order transport equation for the full wave equation. We then introduce appropriate boundary conditions at z = 0 to generate waves at depth whose quotient leads to a reflector map and estimate of the ray-theoretical reflection coefficient on the reflector. Thus, these true amplitude one-way wave equations lead to a "true amplitude wave equation migration (WEM)" method. In fact, we prove that applying the WEM imaging condition to these newly defined wavefields in heterogeneous media leads to the Kirchhoff inversion formula for common-shot data. This extension enhances the original WEM. The objective of that technique was a reflector map, only. The underlying theory did not address amplitude issues. Computer output using numerically generated data confirms the accuracy of this inversion method. However, there are practical limitations. The observed data must be a solution of the wave equation. Therefore, the data over the entire survey area must be collected from a single common-shot experiment. Multi-experiment data, such as common-offset data, cannot be used with this method as presently formulated. Research on extending the method is ongoing at this time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.