These findings suggest that ghrelin effects in HIPP modulate connectivity with the insula, which processes interoception and might be relevant to LSG-induced reductions in appetite/anxiety. Role of LSG in PCC and its enhanced connectivity with DLPFC in improving self-regulation following LSG requires further investigation.
The "hunger" hormone ghrelin regulates food-intake and preference for high-calorie (HC) food through modulation of the mesocortico-limbic dopaminergic pathway. Laparoscopic sleeve gastrectomy (LSG) is an effective bariatric surgery to treat morbid obesity. We tested the hypothesis that LSG-induced reductions in appetite and total ghrelin levels in blood are associated with reduced prefrontal brain reactivity to food cues. A functional magnetic resonance imaging (fMRI) cue-reactivity task with HC and low-calorie (LC) food pictures was used to investigate brain reactivity in 22 obese participants tested before and one month after bariatric surgery (BS). Nineteen obese controls (Ctr) without surgery were also tested at baseline and one-month later. LSG significantly decreased (1) fasting plasma concentrations of total ghrelin, leptin and insulin, (2) craving for HC food, and (3) brain activation in the right dorsolateral prefrontal cortex (DLPFC) in response to HC vs. LC food cues (P FWE < 0.05). LSG-induced reduction in DLPFC activation to food cues were positively correlated with reduction in ghrelin levels and reduction in craving ratings for food. Psychophysiological interaction (PPI) connectivity analyses showed that the right DLPFC had stronger connectivity with the ventral anterior cingulate cortex (vACC) after LSG; and changes in BMI were negatively correlated with changes in connectivity between the right DLPFC and vACC in the LSG group only. These findings suggest that LSG-induced weightloss may be related to reductions in ghrelin, possibly leading to decreased food craving and hypothetically reducing DLPFC response to the HC food cues.
Obese individuals exhibit brain alterations of resting-state functional connectivity (RSFC) integrity of resting-state networks (RSNs) related to food intake. Bariatric surgery is currently the most effective treatment for combating morbid obesity. How bariatric surgery influences neurocircuitry is mostly unknown. Functional connectivity density (FCD) mapping was employed to calculate local (lFCD)/global (gFCD) voxelwise connectivity metrics in 22 obese participants who underwent functional magnetic resonance imaging before and 1 month after sleeve gastrectomy (SG), and in 19 obese controls (Ctr) without surgery but tested twice (baseline and 1-month later). Two factor (group, time) repeated measures ANOVA was used to assess main and interaction effects in lFCD/gFCD; regions of interest were identified for subsequent seed to voxel connectivity analyses to assess resting-state functional connectivity and to examine association with weight loss. Bariatric surgery significantly decreased lFCD in VMPFC, posterior cingulate cortex (PCC)/precuneus, and dorsal anterior cingulate cortex (dACC)/dorsomedial prefrontal cortex (DMPFC) and decreased gFCD in VMPFC, right dorsolateral prefrontal cortex (DLPFC) and right insula (p < .05). lFCD decreased in VMPFC and PCC/precuneus correlated with reduction in BMI after surgery. Seed to voxel connectivity analyses showed the VMPFC had stronger connectivity with left DLPFC and weaker connectivity with hippocampus/parahippocampus, and PCC/precuneus had stronger connectivity with right caudate and left DLPFC after surgery. Bariatric surgery significantly decreased FCD in regions involved in self-referential processing (VMPFC, DMPFC, dACC, and precuneus), and interoception (insula), and changes in VMPFC/precuneus were associated with reduction in BMI suggesting a role in improving control of eating behaviors following surgery.
Objective
The aim of this study was to investigate alterations in functional connectivity (FC) within and interactions between resting‐state networks involved in salience, executive control, and interoception in participants with obesity (OB).
Methods
Using resting‐state functional magnetic resonance imaging with independent component analysis and FC, alterations within and interactions between resting‐state networks in 35 OB and 35 normal‐weight controls (NW) were investigated.
Results
Compared with NW, OB showed reduced FC strength in the ventromedial prefrontal cortex and posterior cingulate cortex/precuneus within the default‐mode network, dorsal anterior cingulate cortex within the salience network (SN), bilateral dorsolateral prefrontal cortex‐angular gyrus within the frontoparietal network (FPN), and increased FC strength in the insula (INS) (Pfamilywise error < 0.0125). The dorsal anterior cingulate cortex FC strength was negatively correlated with craving for food cues, left dorsolateral prefrontal cortex FC strength was negatively correlated with Yale Food Addiction Scale scores, and right INS FC strength was positively correlated with craving for high‐calorie food cues. Compared with NW, OB also showed increased FC between the SN and FPN driven by altered FC of bilateral INS and anterior cingulate cortex‐angular gyrus.
Conclusions
Alterations in FC within and interactions between the SN, default‐mode network, and FPN might contribute to the high incentive value of food (craving), lack of control of overeating (compulsive overeating), and increased awareness of hunger (impaired interoception) in OB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.