Drug–target interaction (DTI) is an important step in drug discovery. Although there are many methods for predicting drug targets, these methods have limitations in using discrete or manual feature representations. In recent years, deep learning methods have been used to predict DTIs to improve these defects. However, most of the existing deep learning methods lack the fusion of topological structure and semantic information in DPP representation learning process. Besides, when learning the DPP node representation in the DPP network, the different influences between neighboring nodes are ignored. In this paper, a new model DTI-MGNN based on multi-channel graph convolutional network and graph attention is proposed for DTI prediction. We use two independent graph attention networks to learn the different interactions between nodes for the topology graph and feature graph with different strengths. At the same time, we use a graph convolutional network with shared weight matrices to learn the common information of the two graphs. The DTI-MGNN model combines topological structure and semantic features to improve the representation learning ability of DPPs, and obtain the state-of-the-art results on public datasets. Specifically, DTI-MGNN has achieved a high accuracy in identifying DTIs (the area under the receiver operating characteristic curve is 0.9665).
Motivation Identification of Drug–Target Interactions (DTIs) is an essential step in drug discovery and repositioning. DTI prediction based on biological experiments is time-consuming and expensive. In recent years, graph learning-based methods have aroused widespread interest and shown certain advantages on this task, where the DTI prediction is often modeled as a binary classification problem of the nodes composed of drug and protein pairs (DPPs). Nevertheless, in many real applications, labeled data are very limited and expensive to obtain. With only a few thousand labeled data, models could hardly recognize comprehensive patterns of DPP node representations, and are unable to capture enough commonsense knowledge, which is required in DTI prediction. Supervised contrastive learning gives an aligned representation of DPP node representations with the same class label. In embedding space, DPP node representations with the same label are pulled together, and those with different labels are pushed apart. Results We propose an end-to-end supervised graph co-contrastive learning model for DTI prediction directly from heterogeneous networks. By contrasting the topology structures and semantic features of the drug–protein-pair network, as well as the new selection strategy of positive and negative samples, SGCL-DTI generates a contrastive loss to guide the model optimization in a supervised manner. Comprehensive experiments on three public datasets demonstrate that our model outperforms the SOTA methods significantly on the task of DTI prediction, especially in the case of cold start. Furthermore, SGCL-DTI provides a new research perspective of contrastive learning for DTI prediction. Availability and implementation The research shows that this method has certain applicability in the discovery of drugs, the identification of drug–target pairs and so on.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.