Respiratory monitoring is widely used in clinical and healthcare practice to detect abnormal cardiopulmonary function during ordinary and routine activities. There are several approaches to estimate respiratory rate, including accelerometer(s) worn on the torso that are capable of sensing the inclination changes due to breathing. In this article, we present an adaptive band-pass filtering method combined with principal component analysis to derive the respiratory rate from threedimensional acceleration data, using a body sensor network platform previously developed by us. In situ experiments with 12 subjects indicated that our method was capable of offering dynamic respiration rate estimation during various body activities such as sitting, walking, running, and sleeping. The experimental studies also suggested that our frequency spectrum-based method was more robust, resilient to motion artifact, and therefore outperformed those algorithms primarily based on spatial acceleration information.
Our results imply that GOLPH3 promotes glioma cell proliferation via inhibiting Rab5-mediated endocytosis and degradation of EGFR, thereby activating the phosphatidylinositol-3 kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR) signaling pathway. We find a new mechanism by which GOLPH3 promotes tumor progression through regulating cell surface receptor trafficking. Extensive and intensive understanding of the role of GOLPH3 in glioma progression may provide an opportunity to develop a novel molecular therapeutic target for gliomas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.