Terpenes and terpenoids are among the key impact substances in the food and fragrance industries. Equipped with pharmacological properties and applications as ideal precursors for the biotechnological production of natural aroma chemicals, interests in these compounds have been escalating. Hence, the syntheses of new derivatives that can show improved properties are often called for. Stereoselective biotransformation offers several benefits to increase the rate of production, in terms of both the percentage yield and its enantiomeric excesses. Baker's yeast (Saccharomyces cerevisiae) is broadly used as a whole cell stereospecific reduction biocatalyst, due to its capability in reducing carbonyls and carbon-carbon double bonds, which also extends its functionality as a versatile biocatalyst in terpenoid biotransformation. This review provides some insights on the development and prospects in the reductive biotransformation of monoterpenoids and sesquiterpenoids using S. cerevisiae, with an overview of strategies to overcome the common challenges in large-scale implementation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.