Oxygen-deficient bismuth oxide (r-Bi 2 O 3 )/graphene (GN) is designed, fabricated, and demonstrated via a facile solvothermal and subsequent solution reduction method. The ultrafine network bacterial cellulose (BC) as substrate for r-Bi 2 O 3 /GN exhibits high flexibility, remarkable tensile strength (55.1 MPa), and large mass loading of 9.8 mg cm −2 . The flexible r-Bi 2 O 3 /GN/ BC anode delivers appreciable areal capacitance (6675 mF cm −2 at 1 mA cm −2 ) coupled with good rate capability (3750 mF cm −2 at 50 mA cm −2 ). In addition, oxygen vacancies have great influence on the capacitive performance of Bi 2 O 3 , delivering significantly improved capacitive values than the untreated Bi 2 O 3 flexible electrode, and ultrahigh gravimetric capacitance of 1137 F g −1 (based on the mass of r-Bi 2 O 3 ) can be obtained, achieving 83% of the theoretical value (1370 F g −1 ). Flexible asymmetric supercapacitor is fabricated with r-Bi 2 O 3 /GN/BC and Co 3 O 4 /GN/BC paper as the negative and positive electrodes, respectively. The operation voltage is expanded to 1.6 V, revealing a maximum areal energy density of 0.449 mWh cm −2 (7.74 mWh cm −3 ) and an areal power density of 40 mW cm −2 (690 mW cm −3 ). Therefore, this flexible anode with excellent electrochemical performance and high mechanical properties shows great potential in the field of flexible energy storage devices.
A covalently connected rGO–TpPa-1-COF hybrid material synthesized by one-pot reaction for enhanced photocatalytic hydrogen evolution under visible light irradiation.
Ti‐doped FeOOH quantum dots (QD) decorated on graphene (GN) sheets are designed and fabricated by a facile and scalable synthesis route. Importantly, the Ti‐doped FeOOH QD/GN are successfully dispersed within bacterial cellulose (BC) substrate as bending anode with large loading mass for flexible supercapacitor. By virtue of its favorable architecture, this composite electrode exhibits a remarkable areal capacitance of 3322 mF cm−2 at 2 mA cm−2, outstanding cycle performance (94.7% capacitance retention after 6000 cycles), and excellent mechanical strength (68.7 MPa). To push the energy density of flexible supercapacitors, the optimized asymmetric supercapacitor using Mn3O4/GN/BC as positive electrode and Ti‐doped FeOOH QD/GN/BC as negative electrode can be cycled reversibly in the operating voltage range of 0–1.8 V and displays ultrahigh areal energy density of 0.541 mWh cm−2, ultrahigh volumetric energy density of 9.02 mWh cm−3, reasonable cycling performance (9.4% decay in specific capacitance after 5000 cycles), and good capacitive retention at bending state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.