Antimicrobial substances may be synthetic, semisynthetic, or of natural origin (i.e., from plants and animals). Antimicrobials are considered "miracle drugs" and can determine if an infected patient/animal recovers or dies. However, the misuse of antimicrobials has led to the development of multi-drug-resistant bacteria, which is one of the greatest challenges for healthcare practitioners and is a significant global threat. The major concern with the development of antimicrobial resistance is the spread of resistant organisms. The replacement of conventional antimicrobials by new technology to counteract antimicrobial resistance is ongoing. Nanotechnology-driven innovations provide hope for patients and practitioners in overcoming the problem of drug resistance. Nanomaterials have tremendous potential in both the medical and veterinary fields. Several nanostructures comprising metallic particles have been developed to counteract microbial pathogens. The effectiveness of nanoparticles (NPs) depends on the interaction between the microorganism and the NPs. The development of effective nanomaterials requires in-depth knowledge of the physicochemical properties of NPs and the biological aspects of microorganisms. However, the risks associated with using NPs in healthcare need to be addressed. The present review highlights the antimicrobial effects of various nanomaterials and their potential advantages, drawbacks, or side effects. In addition, this comprehensive information may be useful in the discovery of broad-spectrum antimicrobial drugs for use against multi-drug-resistant microbial pathogens in the near future.
Honeydew melon (Cucumis melo L.) is an oval-shaped delicious fruit of one cultivar group of the muskmelon with immense nutritional importance and is extensively consumed by many tropical countries. The effect of various organic solvents on the recovery of phytochemicals from honeydew melon plant fruits and seeds was assessed. Further, High-Performance Liquid Chromatography (HPLC) was used to examine and assess the contents of phenolic acid (gallic acid) and flavonoid (rutin) compounds. The use of gas chromatography–mass spectrometry (GC-MS) analysis explained the presence of volatile phytocompounds in the extracts. The use of organic solvents had a substantial impact on the total dry weight and extract yield. In general, the solvent-extracted constituents remained in the order of methanol>chloroform>distilled water for both honeydew melon seeds and whole fruit. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) was used to assess the cytotoxicity effect against PC3, HCT116, HeLa, and Jurkat cell lines. The chloroform extract exhibited a good cytotoxic activity against all cell lines as compared to other solvent extracts. HPLC analysis revealed the occurrence of gallic acid content of 0.102±0.23 mg/10 mg of dry whole fruit extract, while 10 mg of dry seed extract contained only 0.022±0.12 mg of gallic acid content. Likewise, rutin content was observed to be 0.224±0.31 mg and 0.1916±0.82 mg/10 mg of dry whole fruit and seed extract, respectively. Further, GC-MS analysis revealed the presence of a total of 37 compounds in chloroform extract of whole fruit, while only 14 compounds were found in seed extract. Nevertheless, more examinations are needed to identify and characterize other metabolites from honeydew melon and evaluate their pharmacological importance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.