The structures and relative energies for the basic conformations of silacyclohexane 1 have been calculated using HF, RI‐MP2, RI‐DFT and MM3 methods. All methods predict the chair form to be the dominant conformation and all of them predict structures which are in good agreement with experimental data. The conformational energy surface of 1 has been calculated using MM3. It is found that there are two symmetric lowest energy pathways for the chair‐to‐chair inversion. Each of them consists of two sofa‐like transition states, two twist forms with C1 symmetry (twist‐C1), two boat forms with Si in a gunnel position (C1 symmetry), and one twist form with C2 symmetry (twist‐C2). All methods calculate the relative energy to increase in the order chair < twist‐C2 < twist‐C1 < boat. At the MP2 level of theory and using TZVP and TZVPP (Si atoms) basis sets the relative energies are calculated to be 3.76, 4.80, and 5.47 kcal mol–1 for the twist‐C2, twist‐C1, and boat conformations, respectively. The energy barrier from the chair to the twisted conformations of 1 is found to be 6.6 and 5.7 kcal mol–1 from MM3 and RI‐DFT calculations, respectively. The boat form with Si at the prow (Cs symmetry) does not correspond to a local minimum nor a saddle point on the MM3 energy surface, whereas a RI‐DFT optimization under Cs symmetry constraint resulted in a local minimum. In both cases its energy is above that of the chair‐to‐twist‐C1 transition state, however, and it is clearly not a part of the chair‐to‐chair inversion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.