We consider the computational complexity of some problems dealing with matrix rank.<br /> Let E, S be subsets of a commutative ring R.<br />Let x1, x2, ..., xt be variables. Given a matrix M = M(x1, x2, ..., xt)<br />with entries chosen from E union {x1, x2, ..., xt}, we want to determine<br />maxrankS(M) = max rank M(a1, a2, ... , at)<br />and<br />minrankS(M) = min rank M(a1, a2, ..., at). <br />There are also variants of these problems that specify more about the<br />structure of M, or instead of asking for the minimum or maximum rank, <br />ask if there is some substitution of the variables that makes the matrix<br /> invertible or noninvertible.<br />Depending on E, S, and on which variant is studied, the complexity<br />of these problems can range from polynomial-time solvable to random<br />polynomial-time solvable to NP-complete to PSPACE-solvable to<br />unsolvable.
Let M be a fixed finite monoid. We consider the problem of implementing a data type containing a vector x = (x 1 , x 2 , . . . , x n ) ∈ M n , initially (1, 1, . . . , 1) with two kinds of operations, for each i ∈ {1, . . . , n}, a ∈ M, an operation change i,a which changes x i , to a and a single operation product returning n i=1 x i . This is the dynamic word problem. If we in addition for each j ∈ 1, . . . , n have an operation prefix j ; returning n i=1 x i , we talk about the dynamic prefix problem. We analyze the complexity of these problems in the cell probe or decision assignment tree model for two natural cell sizes, 1 bit and log n bits. We obtain a classification of the complexity based on algebraic properties of M .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.