In situ diffuse reflectance infrared Fourier transform spectroscopy has been used to distinguish surface hydroxyl groups on Al 2 O 3 and PdO/Al 2 O 3 model catalysts calcined at 500−900 °C. Employing the operando approach, the formation of surface hydroxyl groups has been correlated to the methane oxidation activity for PdO/Al 2 O 3 catalysts using a PdO powder sample as reference. The results show that the alumina support stabilizes active PdO particles leading to enhanced apparent methane turnover frequency (TOF), which decreases slowly in dry conditions due to alumina hydroxylation. Wet conditions cause severe hydroxylation that is detrimental for the methane TOF. The hydroxylation follows two different routes, i.e., spillover of hydrogen-containing species to the PdO-Al 2 O 3 boundary and/or the close proximity of the supported PdO particles and under wet conditions also dissociation of gas phase water on the entire alumina surface. Both hydroxylation routes obey varying kinetics such that near saturation is reached quickly (minutes) followed by a continuous slow growth for prolonged exposure times (hours). At low temperatures, inhibition of palladium active sites on the rim of the PdO particles close to alumina seems to be of particular importance for the observed detrimental effect of water, whereas water induced morphological changes (no sintering observed) of the PdO particles play a minor role.
Structural and morphological characterisation of bimetallic Pd-Pt/Al 2 O 3 model catalysts are performed using X-ray diffraction, X-ray absorption spectroscopy, transmission electron microscopy and CO chemisorption. Further, the catalysts were studied under oxidising and reducing conditions using both X-ray absorption spectroscopy and low-energy ion scattering spectroscopy. For the as-prepared catalysts, the existence of alloyed bimetallic Pd-Pt particles and of (tetragonal) PdO were found for the samples calcined at 800 C. PdO is present in form of crystals at the surface of the Pd-Pt particles or as isolated PdO crystals on the support oxide. Bimetallic Pd-Pt nanoparticles were only formed on the Pd-Pt catalysts after calcination at 800 C. The results show that the Pd-Pt nanoparticles undergo reversible changes in surface structure composition and chemical state in response to oxidising or reducing conditions. Under oxidising conditions Pd segregates to the shell and oxidises forming PdO, while under reducing conditions regions with metallic Pd and Pd-Pt alloys were observed at the surface.No bimetallic Pd-Pt nanoparticles were observed for the sample initially calcined at 500 C, but instead isolated monometallic particles, where small Pt particles are easily oxidised under O 2 treatment. In the monometallic catalysts, the Pd is found to be completely oxidised already after calcination and to consist of metallic Pd after reductive treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.