Abstract:In contrast to non-cohesive sediments, the incipient motion of cohesive sediments is characterized by much more complex interactions between several sedimentary, biological, and chemical parameters. Thus, site-specific investigations are required to obtain information about the erosion stability of cohesive materials. This becomes even more relevant for contaminated sediments, stored in riverine sediments as a "burden of the past", because of their remobilization potential during flood events. This article represents a twofold measuring strategy for the detection of erosion thresholds: an in situ device for determination of critical shear stresses in the field, and a laboratory approach where sediment cores are withdrawn and subsequently analyzed over depth. The combined measuring strategy was applied in the River Elbe and at selected sites of the catchment of the River Saale. The results show a great variety of erosion thresholds over depth, demonstrating the need to conduct vertical analyses, especially when addressing buried layers with contaminations. The latter is only possible in the laboratory but the in situ device revealed clear benefits in capturing the loose flocculent layer on top of the sediment that might be easily lost during sediment retrieval and transport. Consequently, it is ideal to combine both approaches for a comprehensive insight into sediment stability.
OPEN ACCESSWater 2015, 7 5062
This study focusses on the effect of sampling techniques for suspended matter in stream water on subsequent particle-size distribution and concentrations of total organic carbon and selected persistent organic pollutants. The key questions are whether differences between the sampling techniques are due to the separation principle of the devices or due to the difference between time-proportional versus integral sampling. Several multivariate homogeneity tests were conducted on an extensive set of field-data that covers the period from 2002 to 2007, when up to three different sampling techniques were deployed in parallel at four monitoring stations of the River Rhine. The results indicate homogeneity for polychlorinated biphenyls, but significant effects due to the sampling techniques on particle-size, organic carbon and hexachlorobenzene. The effects can be amplified depending on the site characteristics of the monitoring stations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.