Expression of the breast cancer susceptibility gene, BRCA1, is induced by 17-b estradiol (E 2 ) in estrogen receptor containing breast cancer cell lines. Our previous studies have shown that BRCA1 transcription is also regulated with the cell cycle, reaching maximal levels just before the onset of DNA synthesis. In this study, we have examined whether the estrogen induction of BRCA1 is direct or is a result of the mitogenic activity of the hormone. Four lines of evidence lead us to conclude that E 2 induces BRCA1 primarily through an increase in DNA synthesis: (1) The kinetics and magnitude of induction are di erent from the directly E 2 inducible gene, pS2; (2) Induction of BRCA1, but not pS2, is blocked by cycloheximide indicating that de novo protein synthesis is required; (3) Other hormonal and growth factor treatments that induce DNA synthesis have a similar e ect, including IGF-1, EGF and DNA synthetic ares induced by tamoxifen and retinoic acid; (4) BRCA1 genomic fragments near the 5' end of the gene containing putative estrogen response elements fail to respond to E 2 when transfected into breast cancer cell lines. The most consistent explanation for these ®ndings and other published studies is that BRCA1 transcription is induced as a result of the mitogenic activity of E 2 in estrogen receptor positive cells.
Treatment of the breast cancer cell line, MDAMB468 with the DNA methylation inhibitor, 5-azacytidine (5-AzaC) results in growth arrest, whereas the growth of the normal breast epithelial line DU99 (telomerase immortalized) is relatively unaffected. Comparing gene expression profiles of these two lines after 5-AzaC treatment, we identified 36 genes that had relatively low basal levels in MDAMB468 cells compared to the DU99 line and were induced in the cancer cell line but not in the normal breast epithelial line. Of these genes, 33 have associated CpG islands greater than 300 bp in length but only three have been previously described as targets for aberrant methylation in human cancer. Northern blotting for five of these genes (a-Catenin, DTR, FYN, GADD45a, and Zyxin) verified the array results. Further analysis of one of these genes, GADD45a, showed that 5-AzaC induced expression in five additional breast cancer cell lines with little or no induction in three additional lines derived from normal breast epithelial cells. The CpG island associated with GADD45a was analysed by bisulfite sequencing, sampling over 100 CpG dinucleotides. We found that four CpG's, located approximately 700 bp upstream of the transcriptional start site are methylated in the majority of breast cancer cell lines and primary tumors but not in DNA from normal breast epithelia or matched lymphocytes from cancer patients. Therefore, this simple method of dynamic transcriptional profiling yielded a series of novel methylation-sensitive genes in breast cancer including the BRCA1 and p53 responsive gene, GADD45a.
Epithelial cells within the normal breast duct seem to be the primary target for neoplastic transformation events that eventually produce breast cancer. Normal epithelial cells are easily isolated and propagated using standard techniques. However, these techniques almost invariably result in populations of cells that are largely basal in character. Because only f20% of human breast cancers exhibit a basal phenotype, our understanding of the disease may be skewed by using these cells as the primary comparator to cancer. Further, because germ line mutations in BRCA1 yield breast cancers that are most often of the basal type, a comparison of normal basal and luminal cells could yield insight into the tissue and cell type specificity of this hereditary cancer susceptibility gene. In this report, we describe a simplified and efficient method for isolating basal and luminal cells from normal human breast tissue. These isogenic cells can be independently propagated and maintain phenotypic markers consistent with their respective lineages. Using these cultured cells, we show that basal and luminal cells exhibit distinct responses to ionizing radiation. Basal cells undergo a rapid but labile cell cycle arrest, whereas luminal cells show a much more durable arrest, primarily at the G 2 -M boundary. Molecular markers, including p53 protein accumulation, p53-activated genes, and BRCA1 nuclear focus formation all correlate with the respective cell cycle responses. Further, we show that short-term cultures of human breast tissue fragments treated with ionizing radiation show a similar phenomenon as indicated by the biphasic accumulation of p53 protein in the basal versus luminal layer. Together, these results indicate that normal basal cells have a transitory cell cycle arrest after DNA damage that may underlie their increased susceptibility to transformation after the loss of functional BRCA1. [Cancer Res 2007;67(7):2990-3001]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.