Efforts to model and simulate various aspects of liquid chromatography (LC) separations (e.g., retention, selectivity, peak capacity, injection breakthrough) depend on experimental retention measurements to use as the basis for the models and simulations. Often these modeling and simulation efforts are limited by datasets that are too small because of the cost (time and money) associated with making the measurements. Other groups have demonstrated improvements in throughput of LC separations by focusing on “overhead” associated with the instrument itself – for example, between-analysis software processing time, and autosampler motions. In this paper we explore the possibility of using columns with small volumes (i.e., 5 mm x 2.1 mm i.d.) compared to conventional columns (e.g., 100 mm x 2.1 mm i.d.) that are typically used for retention measurements. We find that isocratic retention factors calculated for columns with these dimensions are different by about 20%; we attribute this difference – which we interpret as an error in measurements based on data from the 5 mm column – to extra-column volume associated with inlet and outlet frits. Since retention factor is a thermodynamic property of the mobile/stationary phase system under study, it should be independent of the dimensions of the column that is used for the measurement. We propose using ratios of retention factors (i.e., selectivities) to translate retention measurements between columns of different dimensions, so that measurements made using small columns can be used to make predictions for separations that involve conventional columns. We find that this approach reduces the difference in retention factors (5 mm compared to 100 mm columns) from an average of 18% to an average absolute difference of 1.7% (all errors less than 8%). This approach will significantly increase the rate at which high quality retention data can be collected to thousands of measurements per instrument per day, which in turn will likely have a profound impact on the quality of models and simulations that can be developed for many aspects of LC separations.
Efforts to model and simulate various aspects of liquid chromatography (LC) separations (e.g., retention, selectivity, peak capacity, injection breakthrough) depend on experimental retention measurements to use as the basis for the models and simulations. Often these modeling and simulation efforts are limited by datasets that are too small because of the cost (time and money) associated with making the measurements. Other groups have demonstrated improvements in throughput of LC separations by focusing on “overhead” associated with the instrument itself – for example, between-analysis software processing time, and autosampler motions. In this paper we explore the possibility of using columns with small volumes (i.e., 5 mm x 2.1 mm i.d.) compared to conventional columns (e.g., 100 mm x 2.1 mm i.d.) that are typically used for retention measurements. We find that isocratic retention factors calculated for columns with these dimensions are different by about 20%; we attribute this difference – which we interpret as an error in measurements based on data from the 5 mm column – to extra-column volume associated with inlet and outlet frits. Since retention factor is a thermodynamic property of the mobile/stationary phase system under study, it should be independent of the dimensions of the column that is used for the measurement. We propose using ratios of retention factors (i.e., selectivities) to translate retention measurements between columns of different dimensions, so that measurements made using small columns can be used to make predictions for separations that involve conventional columns. We find that this approach reduces the difference in retention factors (5 mm compared to 100 mm columns) from an average of 18% to an average of less than 1%. This approach will significantly increase the rate at which high quality retention data can be collected to thousands of measurements per instrument per day, which in turn will likely have a profound impact on the quality of models and simulations that can be developed for many aspects of LC separations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.