Genome replication generally requires primases, which synthesize an initial oligonucleotide primer, and DNA polymerases, which elongate the primer. Primase and DNA polymerase activities are combined, however, in newly identified replicases from archaeal plasmids, such as pRN1 from Sulfolobus islandicus. Here we present a structure-function analysis of the pRN1 primase-polymerase (prim-pol) domain. The crystal structure shows a central depression lined by conserved residues. Mutations on one side of the depression reduce DNA affinity. On the opposite side of the depression cluster three acidic residues and a histidine, which are required for primase and DNA polymerase activity. One acidic residue binds a manganese ion, suggestive of a metal-dependent catalytic mechanism. The structure does not show any similarity to DNA polymerases, but is distantly related to archaeal and eukaryotic primases, with corresponding active-site residues. We propose that archaeal and eukaryotic primases and the prim-pol domain have a common evolutionary ancestor, a bifunctional replicase for small DNA genomes.
Recent knockout experiments in the mouse generated amazing craniofacial skeletal muscle phenotypes. Yet none of the genes could be placed into a molecular network, because the programme to control the development of muscles in the head is not known. Here we show that antagonistic signals from the neural tube and the branchial arches specify extraocular versus branchiomeric muscles. Moreover, we identified Fgf8 as the branchial arch derived signal. However, this molecule has an additional function in supporting the proliferative state of myoblasts, suppressing their differentiation, while a further branchial arch derived signal, namely Bmp7, is an overall negative regulator of head myogenesis.
Somitic and head mesoderm contribute to cartilage and bone and deliver the entire skeletal musculature. Studies on avian somite patterning and cell differentiation led to the view that these processes depend solely on cues from surrounding tissues. However, evidence is accumulating that some developmental decisions depend on information within the somitic tissue itself. Moreover, recent studies established that head and somitic mesoderm, though delivering the same tissue types, are set up to follow their own, distinct developmental programmes. With a particular focus on the chicken embryo, we review the current understanding of how extrinsic signalling, operating in a framework of intrinsically regulated constraints, controls paraxial mesoderm patterning and cell differentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.