Room-temperature sodium-sulfur batteries are considered potential candidates for stationary power storage applications due to their low cost, broad active material availability, and low toxicity. Challenges, such as high volume expansion of the S-cathode upon discharge, low electronic conductivity of S as active material, and herewith limited rate capability as well as the shuttling of polysulfides (PSs) as intermediates often impede the cycle stability and practical application of Na-S batteries. Sulfurized poly(acrylonitrile) (SPAN) inherently inhibits the shuttling of PSs and shows compatibility with carbonate-based electrolytes; however, its exact redox mechanism remained unclear to date. Herein, we implement a commercially available and simple electrolyte into the Na-SPAN cell chemistry and demonstrate its high rate and cycle stability. Through the application of in situ techniques utilizing electronic impedance spectroscopy and X-ray absorption spectroscopy at different depths of charge and discharge, an insight into SPAN’s redox chemistry could be obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.