Due to the increase in complexity in autonomous vehicles, most of the existing control systems are proving to be inadequate. Reinforcement Learning is gaining traction as it is posed to overcome these difficulties in a natural way. This approach allows an agent that interacts with the environment to get rewards for appropriate actions, learning to improve its performance continuously. The article describes the design and development of an algorithm to control the position of a wheeled mobile robot using Reinforcement Learning. One main advantage of this approach concerning traditional control algorithms is that the learning process is carried out automatically with a recursive procedure forward in time. Moreover, given the fidelity of the model for the particular implementation described in this work, the whole learning process can be carried out in simulation. This fact avoids damages to the actual robot during the learning stage. It shows that the position control of the robot (or similar specific tasks) can be done without the need to know the dynamic model of the system explicitly. Its main drawback is that the learning stage can take a long time to finish and that it depends on the complexity of the task and the availability of adequate hardware resources. This work provides a comparison between the proposed approach and traditional existing control laws in simulation and real environments. The article also discusses the main effects of using different controlled variables in the performance of the developed control law.
This article presents the development of a model of a spherical robot that rolls to move and has a single point of support with the surface. The model was developed in the CoppeliaSim simulator, which is a versatile tool for implementing this kind of experience. The model was tested under several scenarios and control goals (i.e., position control, path-following and formation control) with control strategies such as reinforcement learning, and Villela and IPC algorithms. The results of these approaches were compared using performance indexes to analyze the performance of the model under different scenarios. The model and examples with different control scenarios are available online.
This article proposes the use of reinforcement learning (RL) algorithms to control the position of a simulated Kephera IV mobile robot in a virtual environment. The simulated environment uses the OpenAI Gym library in conjunction with CoppeliaSim, a 3D simulation platform, to perform the experiments and control the position of the robot. The RL agents used correspond to the deep deterministic policy gradient (DDPG) and deep Q network (DQN), and their results are compared with two control algorithms called Villela and IPC. The results obtained from the experiments in environments with and without obstacles show that DDPG and DQN manage to learn and infer the best actions in the environment, allowing us to effectively perform the position control of different target points and obtain the best results based on different metrics and indices.
This paper presents the design and implementation of a spherical robot with an internal mechanism based on a pendulum. The design is based on significant improvements made, including an electronics upgrade, to a previous robot prototype developed in our laboratory. Such modifications do not significantly impact its corresponding simulation model previously developed in CoppeliaSim, so it can be used with minor modifications. The robot is incorporated into a real test platform designed and built for this purpose. As part of the incorporation of the robot into the platform, software codes are made to detect its position and orientation, using the system SwisTrack, to control its position and speed. This implementation allows successful testing of control algorithms previously developed by the authors for other robots such as Villela, the Integral Proportional Controller, and Reinforcement Learning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.