A procedure for defining virtual spaces, and the periodic one-electron and two-electron integrals, for plane-wave second quantized Hamiltonians has been developed and demonstrated using full configuration interaction (FCI) simulations and variational quantum eigensolver (VQE) circuits on Quantinuum's ion trap quantum computers accessed through Microsoft's Azure Quantum service. This work is an extension to periodic systems of a new class of algorithms in which the virtual spaces were generated by optimizing orbitals from small pairwise CI Hamiltonians, which we term as correlation optimized virtual orbitals with the abbreviation COVOs. In this extension, the integration of the first Brillouin zone is automatically incorporated into the two-electron integrals. With these procedures we have been able to derive virtual spaces, containing only a few orbitals, that were able to capture a significant amount of correlation. The focus in this manuscript is on comparing the simulations of small molecules calculated with plane-wave basis sets with large periodic unit cells at the Γ-point, including images, to results for plane-wave basis sets with aperiodic unit cells. The results for this approach were promising as we were able to obtain good agreement between periodic and aperiodic results for an LiH molecule. Simulations performed on the Quantinuum H1-1 quantum computer were able to produce surprisingly good energies, reproducing the FCI values for the 1 COVO Hamiltonian to within 11 milliHartree (6.9 kcal/mol), when corrected for noise.
A procedure for defining virtual spaces, and the periodic one-electron and two-electron integrals, for plane-wave second quantized Hamiltonians has been developed, and it was validated using full configuration interaction (FCI) calculations, as well as executions of variational quantum eigensolver (VQE) circuits on Quantinuum’s ion trap quantum computers accessed through Microsoft’s Azure Quantum service. This work is an extension to periodic systems of a new class of algorithms in which the virtual spaces were generated by optimizing orbitals from small pairwise CI Hamiltonians, which we term as correlation optimized virtual orbitals with the abbreviation COVOs. In this extension, the integration of the first Brillouin zone is automatically incorporated into the two-electron integrals. With these procedures, we have been able to derive virtual spaces, containing only a few orbitals, that were able to capture a significant amount of correlation. The focus in this manuscript is on comparing the simulations of small molecules calculated with plane-wave basis sets with large periodic unit cells at the $$\Gamma$$ Γ -point, including images, to results for plane-wave basis sets with aperiodic unit cells. The results for this approach were promising, as we were able to obtain good agreement between periodic and aperiodic results for an LiH molecule. Calculations performed on the Quantinuum H1-1 quantum computer produced surprisingly good energies, in which the error mitigation played a small role in the quantum hardware calculations and the (noisy) quantum simulator results. Using a modest number of circuit runs (500 shots), we reproduced the FCI values for the 1 COVO Hamiltonian with an error of 11 milliHartree, which is expected to improve with a larger number of circuit runs.
No abstract
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.