The goal of this paper is to further study the index calculus method that was first introduced by Semaev for solving the ECDLP and later developed by Gaudry and Diem. In particular, we focus on the step which consists in decomposing points of the curve with respect to an appropriately chosen factor basis. This part can be nicely reformulated as a purely algebraic problem consisting in finding solutions to a multivariate polynomial f (x1,. .. , xm) = 0 such that x1,. .. , xm all belong to some vector subspace of F2n /F2. Our main contribution is the identification of particular structures inherent to such polynomial systems and a dedicated method for tackling this problem. We solve it by means of Gröbner basis techniques and analyze its complexity using the multi-homogeneous structure of the equations. A direct consequence of our results is an index calculus algorithm solving ECDLP over any binary field F2n in time O(2 ω t), with t ≈ n/2 (provided that a certain heuristic assumption holds). This has to be compared with Diem's [14] index calculus based approach for solving ECDLP over Fqn which has complexity exp O(n log(n) 1/2) for q = 2 and n a prime (but this holds without any heuristic assumption). We emphasize that the complexity obtained here is very conservative in comparison to experimental results. We hope the new ideas provided here may lead to efficient index calculus based methods for solving ECDLP in theory and practice.
ABSTRACT. In 2004, an algorithm is introduced to solve the DLP for elliptic curves defined over a non prime finite field F q n . One of the main steps of this algorithm requires decomposing points of the curve E(F q n ) with respect to a factor base, this problem is denoted PDP. In this paper, we will apply this algorithm to the case of Edwards curves, the well-known family of elliptic curves that allow faster arithmetic as shown by Bernstein and Lange. More precisely, we show how to take advantage of some symmetries of twisted Edwards and twisted Jacobi intersections curves to gain an exponential factor 2 ω(n−1) to solve the corresponding PDP where ω is the exponent in the complexity of multiplying two dense matrices. Practical experiments supporting the theoretical result are also given. For instance, the complexity of solving the ECDLP for twisted Edwards curves defined over F q 5 , with q ≈ 2 64 , is supposed to be ∼ 2 160 operations in E(F q 5 ) using generic algorithms compared to 2 130 operations (multiplications of two 32-bits words) with our method. For these parameters the PDP is intractable with the original algorithm.The main tool to achieve these results relies on the use of the symmetries and the quasi-homogeneous structure induced by these symmetries during the polynomial system solving step. Also, we use a recent work on a new algorithm for the change of ordering of Gröbner basis which provides a better heuristic complexity of the total solving process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.