ABSTRACT. In 2004, an algorithm is introduced to solve the DLP for elliptic curves defined over a non prime finite field F q n . One of the main steps of this algorithm requires decomposing points of the curve E(F q n ) with respect to a factor base, this problem is denoted PDP. In this paper, we will apply this algorithm to the case of Edwards curves, the well-known family of elliptic curves that allow faster arithmetic as shown by Bernstein and Lange. More precisely, we show how to take advantage of some symmetries of twisted Edwards and twisted Jacobi intersections curves to gain an exponential factor 2 ω(n−1) to solve the corresponding PDP where ω is the exponent in the complexity of multiplying two dense matrices. Practical experiments supporting the theoretical result are also given. For instance, the complexity of solving the ECDLP for twisted Edwards curves defined over F q 5 , with q ≈ 2 64 , is supposed to be ∼ 2 160 operations in E(F q 5 ) using generic algorithms compared to 2 130 operations (multiplications of two 32-bits words) with our method. For these parameters the PDP is intractable with the original algorithm.The main tool to achieve these results relies on the use of the symmetries and the quasi-homogeneous structure induced by these symmetries during the polynomial system solving step. Also, we use a recent work on a new algorithm for the change of ordering of Gröbner basis which provides a better heuristic complexity of the total solving process.
The usual algorithm to solve polynomial systems using Gröbner bases consists of two steps: first computing the DRL Gröbner basis using the F5 algorithm then computing the LEX Gröbner basis using a change of ordering algorithm. When the Bézout bound is reached, the bottleneck of the total solving process is the change of ordering step. For 20 years, thanks to the FGLM algorithm the complexity of change of ordering is known to be cubic in the number of solutions of the system to solve.We show that, in the generic case or up to a generic linear change of variables, the multiplicative structure of the quotient ring can be computed with no arithmetic operation. Moreover, given this multiplicative structure we propose a change of ordering algorithm for Shape Position ideals whose complexity is polynomial in the number of solutions with exponent ω where 2 ≤ ω < 2.3727 is the exponent in the complexity of multiplying two dense matrices. As a consequence, we propose a new Las Vegas algorithm for solving polynomial systems with a finite number of solutions by using Gröbner basis for which the change of ordering step has a sub-cubic (i.e. with exponent ω) complexity and whose total complexity is dominated by the complexity of the F5 algorithm.In practice we obtain significant speedups for various polynomial systems by a factor up to 1500 for specific cases and we are now able to tackle some instances that were intractable.
Abstract. Decomposition-based index calculus methods are currently efficient only for elliptic curves E defined over non-prime finite fields of very small extension degree n. This corresponds to the fact that the Semaev summation polynomials, which encode the relation search (or "sieving"), grow over-exponentially with n. Actually, even their computation is a first stumbling block and the largest Semaev polynomial ever computed is the 6-th. Following ideas from Faugère, Gaudry, Huot and Renault, our goal is to use the existence of small order torsion points on E to define new summation polynomials whose symmetrized expressions are much more compact and easier to compute. This setting allows to consider smaller factor bases, and the high sparsity of the new summation polynomials provides a very efficient decomposition step. In this paper the focus is on 2-torsion points, as it is the most important case in practice. We obtain records of two kinds: we successfully compute up to the 8-th symmetrized summation polynomial and give new timings for the computation of relations with degree 5 extension fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.