Epidermal keratinocytes undergo differentiation in response to several stimuli to form the cornified envelope, a structure that contributes to the barrier function of skin. Although differentiation has been extensively analyzed, the precise role of vitamin C during this process is still not defined. Ascorbic acid, besides acting as a radical scavenger, has been shown to promote mesenchymal differentiation. In this study, we found that keratinocytes grown in ascorbate-supplemented medium developed a differentiated phenotype, as demonstrated by enhanced expression of marker genes and increase in cornified envelope content. The pro-differentiating effects of ascorbate were mediated by the protein-kinase-C-dependent induction of activating protein 1 DNA binding activity; indeed, down-modulation of protein kinase C activity abolished differentiation triggered by ascorbic acid. Although vitamin C appeared to regulate the same signaling pathway modulated by calcium, a classical in vitro inducer of epidermal differentiation, nonetheless terminally differentiated keratinocytes exhibited different ascorbate homeostasis and cellular antioxidant status. Indeed, we found that, unlike calcium, differentiation promoted by ascorbate was accompanied by (i) an enhanced ascorbate transport, due to overexpression of specific transporters, (ii) a great efficiency of dehydroascorbate uptake, and (iii) an increase in glutathione content with respect to proliferating cells. Ascorbic acid may be useful to promote epidermal differentiation, avoiding depletion of hydrophilic antioxidant stores.
Current recommendations aimed at reducing neuromuscular and functional loss in aged muscle have identified muscle power as a key target for intervention trials, although little is known about the biological and cardiovascular systemic response in the elderly. This study investigated the effects of 12 weeks of low-frequency, moderate-intensity, explosive-type resistance training (EMRT) on muscle strength and power in old community-dwelling people (70-75 years), monitoring functional performance linked to daily living activities (ADL) and cardiovascular response, as well as biomarkers of muscle damage, cardiovascular risk, and cellular stress response. The present study provides the first evidence that EMRT was highly effective in achieving a significant enhancement in muscular strength and power as well as in functional performance without causing any detrimental modification in cardiovascular, inflammatory, and damage parameters. Moreover, trained elderly subjects showed an adaptive response at both systemic and cellular levels by modulation of antioxidant and stress-induced markers such as myeloperoxidase (MPO), heat shock protein 70 (Hsp70) and 27 (Hsp27), and thioredoxin reductase 1 (TrxR1).
The aim of the present investigation was to test the hypothesis that quercetin (Q) may prevent the strength loss and neuromuscular impairment associated with eccentric exercise-induced muscle damage (EEIMD). Twelve young men (26.1 ± 3.1 years) ingested either Q (1000 mg/day) or placebo (PLA) for 14 days using a randomized, double-blind, crossover study design. Participants completed a comprehensive neuromuscular (NM) evaluation before, during and after an eccentric protocol able to induce a severe muscle damage (10 sets of 10 maximal lengthening contractions). The NM evaluation comprised maximal voluntary isometric contraction (MVIC) and force–velocity relationship assessments with simultaneous recording of electromyographic signals (EMG) from the elbow flexor muscles. Soreness, resting arm angle, arm circumference, plasma creatine kinase (CK) and lactate dehydrogenase (LDH) were also assessed. Q supplementation significantly increased the isometric strength recorded during MVIC compared to baseline (+4.7%, p < 0.05). Moreover, the torque and muscle fiber conduction velocity (MFCV) decay recorded during the eccentric exercise was significant lower in Q compared to PLA. Immediately after the EEIMD, isometric strength, the force–velocity relationship and MFCV were significantly lower when participants were given PLA rather than Q. Fourteen days of Q supplementation seems able to attenuate the severity of muscle weakness caused by eccentric-induced myofibrillar disruption and sarcolemmal action potential propagation impairment.
We recently demonstrated that low frequency, moderate intensity, explosive-type resistance training (EMRT) is highly beneficial in elderly subjects towards muscle strength and power, with a systemic adaptive response of anti-oxidant and stress-induced markers. In the present study, we aimed to evaluate the impact of EMRT on oxidative stress biomarkers induced in old people (70–75 years) by a single bout of acute, intense exercise. Sixteen subjects randomly assigned to either a control, not exercising group (n=8) or a trained group performing EMRT protocol for 12-weeks (n=8), were submitted to a graded maximal exercise stress test (GXT) at baseline and after the 12-weeks of EMRT protocol, with blood samples collected before, immediately after, 1 and 24 h post-GXT test. Blood glutathione (GSH, GSSG, GSH/GSSG), plasma malonaldehyde (MDA), protein carbonyls and creatine kinase (CK) levels, as well as PBMCs cellular damage (Comet assay, apoptosis) and stress–protein response (Hsp70 and Hsp27 expression) were evaluated. The use of multiple biomarkers allowed us to confirm that EMRT per se neither affected redox homeostasis nor induced any cellular and oxidative damage. Following the GXT, the EMRT group displayed a higher GSH/GSSG ratio and a less pronounced increase in MDA, protein carbonyls and CK levels compared to control group. Moreover, we found that Hsp70 and Hsp27 proteins were induced after GXT only in EMRT group, while any significant modification within 24 h was detected in untrained group. Apoptosis rates and DNA damage did not show any significant variation in relation to EMRT and/or GXT.In conclusion, the adherence to an EMRT protocol is able to induce a cellular adaptation allowing healthy elderly trained subjects to cope with the oxidative stress induced by an acute exercise more effectively than the aged-matched sedentary subjects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.