Key words: fractography, very-high-cycle fatigue, crack initiation Abstract: Very-High-Cycle Fatigue (VHCF) is the phenomenon of fatigue damage and failure of metallic materials or structures subjected to 10 8 cycles of fatigue loading and beyond. This paper attempts to investigate the VHCF behavior and mechanism of a high strength low alloy steel (main composition: C-1% and Cr-1.5%; quenched at 1108K and tempered at 453K). The fractography of fatigue failure was observed by optical microscopy and scanning electron microscopy. The observations reveal that, for the number of cycles to fatigue failure between 10 6 and 4×10 8 cycles, fatigue cracks almost initiated in the interior of specimen and originated at non-metallic inclusions. An "optical dark area" (ODA) around initiation site is observed when fatigue initiation from interior. ODA size increases with the decrease of fatigue stress, and becomes more roundness. Fracture mechanics analysis gives the stress intensity factor of ODA, which is nearly equivalent to the corresponding fatigue threshold of the test material. The results indicate that the fatigue life of specimens with crack origin at the interior of specimen is longer than that with crack origin at specimen surface. The experimental results and the fatigue mechanism were further analyzed in terms of fracture mechanics and fracture physics, suggesting that the primary propagation of fatigue crack within the fish-eye local region is the main characteristics of VHCF.
One potential challenge to the integrity of the reactor pressure vessel (RPV) in a pressurized water reactor is posed by pressurized thermal shock (PTS). Therefore, the safety of the RPV with regard to neutron embrittlement has to be analyzed. In this paper, the procedure and method for the structural integrity analysis of RPV subjected to PTS is presented. The FAVOR code is applied to calculate the probabilities for crack initiation and failure by considering crack distributions based on cracks observed in the Shoreham and PVRUF RPVs in the U.S. A local approach to fracture, i.e. the σ*-A* model is used to predict the warm prestressing (WPS) effect on the RPV integrity. The results show that the remaining stress contributes to the WPS effect, whereas the increase of fracture toughness is not completely attributed to the remaining stress. The modeled load paths predict a material toughness increase of 30-100%.
In this paper, rotary bending fatigue tests for a structural steel were performed in laboratory air, fresh water and 3.5% NaCl aqueous solution, respectively, thus to investigate the influence of environmental media on the fatigue propensity of the steel, especially in high cycle and very-high-cycle fatigue regimes. The results show that the fatigue strength of the steel in water is remarkably degraded compared with the case tested in air, and that the fatigue strength in 3.5% NaCl solution is even lower than that tested in water. The fracture surfaces were examined to reveal fatigue crack initiation and propagation characteristics in air and aqueous environments.
Key words: fractography, very-high-cycle fatigue, crack initiation Abstract: Very-High-Cycle Fatigue (VHCF) is the phenomenon of fatigue damage and failure of metallic materials or structures subjected to 10 8 cycles of fatigue loading and beyond. This paper attempts to investigate the VHCF behavior and mechanism of a high strength low alloy steel (main composition: C-1% and Cr-1.5%; quenched at 1108K and tempered at 453K). The fractography of fatigue failure was observed by optical microscopy and scanning electron microscopy. The observations reveal that, for the number of cycles to fatigue failure between 10 6 and 4×10 8 cycles, fatigue cracks almost initiated in the interior of specimen and originated at non-metallic inclusions. An "optical dark area" (ODA) around initiation site is observed when fatigue initiation from interior. ODA size increases with the decrease of fatigue stress, and becomes more roundness. Fracture mechanics analysis gives the stress intensity factor of ODA, which is nearly equivalent to the corresponding fatigue threshold of the test material. The results indicate that the fatigue life of specimens with crack origin at the interior of specimen is longer than that with crack origin at specimen surface. The experimental results and the fatigue mechanism were further analyzed in terms of fracture mechanics and fracture physics, suggesting that the primary propagation of fatigue crack within the fish-eye local region is the main characteristics of VHCF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.