Pelvic organ prolapse (POP) is a global health problem, for which the pathophysiological mechanism remains to be fully elucidated. The loss of extracellular matrix protein has been considered to be the most important molecular basis facilitating the development of POP. Oxidative stress (OS) is a well-recognized mechanism involved in fiber metabolic disorders. The present study aimed to clarify whether OS exists in the uterosacral ligament (USL) with POP, and to investigate the precise role of OS in collagen metabolism in human USL fibroblasts (hUSLFs). In the present study, 8-hydroxyguanosine (8-OHdG) and 4 hydroxynonenal (4-HNE), as oxidative biomarkers, were examined by immunohistochemistry to evaluate oxidative injury in USL sections in POP (n=20) and non-POP (n=20) groups. The primary cultured hUSLFs were treated with exogenous H2O2 to establish an original OS cell model, in which the expression levels of collagen, type 1, α1 (COL1A1), matrix metalloproteinase (MMP)-2, tissue inhibitor of metalloproteinase (TIMP)-2 and transforming growth factor (TGF)-β1 were evaluated by western blot and reverse transcription-quantitative polymerase chain reaction analyses. The results showed that the expression levels of 8-OHdG and 4-HNE in the POP group were significantly higher, compared with those in the control group. Collagen metabolism was regulated by H2O2 exposure in a concentration-dependent manner, in which lower concentrations of H2O2 (0.1–0.2 mM) stimulated the anabolism of COL1A1, whereas a higher concentration (0.4 mM) promoted catabolism. The expression levels of MMP-2, TIMP-2 and TGF-β1 exhibited corresponding changes with the OS levels. These results suggested that OS may be involved in the pathophysiology of POP by contributing to collagen metabolic disorder in a severity-dependent manner in hUSLFs, possibly through the regulation of MMPs, TIMPs and TGF-β1 indirectly.
We investigated the effects of different raising systems on growth performance, lipid deposition and meat quality traits of chickens. The chickens were raised for 28 days and then randomly assigned into three raising systems with similar body weight (BW) as follows: indoor caged, indoor floor pens and free-range system. They were sacrificed and analysed after 112 days. The raising system had no significant effect on BW and daily weight gain (P > 0.05), but had a significant effect on male thigh intramuscular fat (IMF) and female abdominal fat content (PAF) content (P < 0.05). The expression of hepatic fatty acid synthase (FAS) mRNA level in free-range raising system was significantly lower than that of caged indoor raising systems (P < 0.05). The meat quality (ΔpH, drip loss, shear force and fibre traits) was largely affected by the raising system (P < 0.05). In conclusion, the data indicated that the free-range raising system could significantly reduce thigh IMF content and hepatic FAS expression, consequently affecting the meat quality.
Pelvic organ prolapse (POP) is a common and distressing health problem in adult women, but the pathophysiological mechanism is yet to be fully elucidated. Previous studies have indicated that oxidative stress may be associated with POP. Thus, the aim of the present study was to investigate the oxidative status of pelvic supportive tissue in POP and further demonstrate that oxidative stress is associated with the pathogenesis of POP. A total of 60 samples were collected from females undergoing hysterectomy for POP or cervical intraepithelial neoplasia (CIN). This included 16 females with POP II, 24 females with POP III–IV (according to the POP-Q system) and 20 females with CIN II–III as the control group. Immunohistochemistry was utilized to measure the expression of oxidative biomarkers, 8-hydroxydeoxyguanosine (8-OHdG) and 4-hydroxynonenal (4-HNE). Major antioxidative enzymes, mitochondrial superoxide dismutase (MnSOD) and glutathione peroxidase 1 (GPx1) were measured through reverse transcription-quantitative polymerase chain reaction, western blotting and enzyme activity assays. The results demonstrated that in the cardinal ligament, the expression of 8-OHdG and 4-HNE was higher in the POP III–IV group compared with the POP II group and control group. The MnSOD and GPx1 protein level and enzyme activity were lower in the POP III–IV group compared with the POP II or the control group, while the mRNA expression level of MnSOD and GPx1 was increased. In conclusion, oxidative damage is increased in the pelvic supportive ligament of female patients with POP and the antioxidative defense capacity is decreased. These results support previous findings that oxidative stress is involved in the pathogenesis of POP.
"Add-back" therapy, based on the GnRH-a dose, does not reduce the efficacy of using GNRH-a for the management of endometriosis. "Add-back" therapy reduced the occurrence of side effects that can occur with GnRH-a therapy alone, such as osteoporosis and menopausal syndrome. There were no statistically significant differences when comparing the effectiveness of a variety of "add-back" regimens to each other.
Repair of transvaginal genital fistula using Foley catheter had a high success rate, short operative time, minimal blood loss, low morbidity and short hospital stay. Therefore, this approach is minimally invasive and effective.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.