AimLimited investigations on metabolic responses to exercise training in female adolescent volleyball athletes exist. The aim of this study was to obtain serum and urine metabolite markers in female adolescent volleyball athletes within 2-week strength-endurance training using a metabolomics approach coupled with biochemical analysis, which would be potential biomarkers for evaluating the physiological state of athletes.MethodsTwelve female adolescent volleyball athletes were recruited for 2-week strength-endurance training. Differential serum and urine metabolic profiles between the pre- and post-training group were obtained on gas chromatography coupled to mass spectrometry (GC-MS) and data subsequently underwent orthogonal partial least-squares analysis (OPLS).ResultsStrength-endurance training exerted a significant influence on the athletes' serum and urine metabolic profiles. The changed metabolites were primarily involved in energy metabolism, lipid metabolism and amino acids metabolism. Results support the hypothesis that female athletes displayed an increased propensity to oxidize lipids as the major energy source. Exposure to strength-endurance training also led to a significant increase in cortisol, but a decrease in testosterone, indicating disordered hormone adjustment. Exercise-induced oxidative stress occurred, as was evidenced by the decrease in reduced glutathione, and increases in blood malondialdehyde and oxidized glutathione. Since the muscle damage markers creatine kinase and lactate dehydrogenase did not show significant changes, the training might not cause cell membrane damage and the athletes did not cross the adaptive injury level.ConclusionBy measurement of endogenous metabolites, the metabolomics study has the potential to reveal the global physiological changes in response to exercise training.
Background. Paravertebral muscle (PVM) is considered as a contributing factor of idiopathic scoliosis (IS); collagen is crucial for maintaining the mechanical properties of PVM, but only a few researches have described this field. In this study, we observed the muscle stiffness of PVM and the curvature of the spine by adjusting the content of collagen in PVM of rats and explored the role of collagen in the progression of IS. Methods. 32 female Sprague Dawley rats were randomly divided into four groups: neutralizing antibody (NA) group (group 1), normal control group (group 2), IS group (group 3), and IS with NA group (group 4). TGF-β1 NA was injected into PVM in group 1 and group 4, while Normal saline in group 2 and group 3. The Cobb angle and muscle stiffness were measured before and after injection; the rats were sacrificed at one week after injection, and performed histological, Western Blot, and qRT-PCR examinations. Results. X-rays showed that scoliosis occurred in group 1 and relieved in group 4. The stiffness of PVM was decreased significantly on the convex side in group 1, while on the concave side in group 4. The expression of TGF-β1 and COL1 on the concave side in IS rats (group 3) was significantly increased than that in normal rats (group 2), the concentration of COL1 and COL3 in group 3 was significantly higher than that in group 2, and the addition of TGF-β1 NA significantly downregulated COL1 and COL3 in group 1 and group 4. The concentration of COL1 in convex PVM was negatively related to Cobb angle in group 1 and group 2, and in concave PVM was positively related to Cobb angle in group 3 and group 4. However, no significant correlation was found between COL3 and Cobb angle in group 3 and group 4. Conclusions. Asymmetric biomechanical characteristics of PVM was an important etiological factor of IS, which was directly correlated with collagen, it could be adjusted by local intramuscular injecting of TGF-β1 NA, and finally had an effect on the shape of the spine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.