Alibaba runs the largest e-commerce platform in the world serving more than 600 million customers, with a GMV (gross merchandise value) exceeding USD 768 billion in FY2018. Online e-commerce transactions have three notable characteristics: (1) drastic increase of transactions per second with the kickoff of major sales and promotion events, (2) a large number of hot records that can easily overwhelm system buffers, and (3) quick shift of the "temperature" (hot v.s. warm v.s. cold) of different records due to the availability of promotions on different categories over different short time periods. For example, Alibaba's OLTP database clusters experienced a 122 times increase of transactions on the start of the Singles' Day Global Shopping Festival in 2018, processing up to 491,000 sales transactions per second which translate to more than 70 million database transactions per second. To address these challenges, we introduce X-Engine, a write-optimized storage engine of POLARDB built at Alibaba, which utilizes a tiered storage architecture with the LSM-tree (log-structured merge tree) to leverage hardware acceleration such as FPGA-accelerated compactions, and a suite of optimizations including asynchronous writes in transactions, multi-staged pipelines and incremental cache replacement during compactions. Evaluation results show that X-Engine has outperformed other storage engines under such transactional workloads. CCS Concepts • Information systems → Data access methods; DBMS engine architectures; Database transaction processing.
Frequency-based cache replacement policies that work well on page-based database storage engines are no longer sufficient for the emerging LSM-tree ( Log-Structure Merge-tree ) based storage engines. Due to the append-only and copy-on-write techniques applied to accelerate writes, the state-of-the-art LSM-tree adopts mutable record blocks and issues frequent background operations (i.e., compaction, flush) to reorganize records in possibly every block. As a side-effect, such operations invalidate the corresponding entries in the cache for each involved record, causing sudden drops on the cache hit rates and spikes on access latency. Given the observation that existing methods cannot address this cache invalidation problem, we propose Leaper, a machine learning method to predict hot records in an LSM-tree storage engine and prefetch them into the cache without being disturbed by background operations. We implement Leaper in a state-of-the-art LSM-tree storage engine, X-Engine, as a light-weight plug-in. Evaluation results show that Leaper eliminates about 70% cache invalidations and 99% latency spikes with at most 0.95% overheads as measured in real-world workloads.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.