A strategy for decreasing the viscosity variation in the process of CO2 capture by amino-functionalized ionic liquids (ILs) through the formation of intramolecular hydrogen bond was reported. Different with the dramatic increase in viscosity during CO2 uptake by traditional amino-functionalized ILs, slight increase or even decrease in viscosity was achieved through introducing a N or O atom as hydrogen acceptor into amino-functionalized anion, which could stabilize the active hydrogen of produced carbamic acid. Quantum chemical calculations and spectroscopic investigations demonstrated that the formation of intramolecular hydrogen bond between introduced hydrogen acceptor and carbamic acid was the key to avoid the dramatic increase in viscosity during the capture of CO2 by these amino-functionalized ILs.
Generally, amine group captures CO 2 according to 2:1 or 1:1 stoichiometry. Here, we report a kind of improved carbon capture using amino-functionalized ionic liquids (ILs) through 1:2 stoichiometry. A serial of amino-functionalized ILs various with basicity and steric hindrance of anion were designed, prepared, and applied in CO 2 capture. Through a combination of absorption experiment, quantum chemical calculation, spectroscopic investigation and calorimetric method, the results indicated that one amine group could bind two CO 2 through proton transfer (PT) process and intramolecular hydrogen bond formation, which leading to enhanced capacity that breaks through equimolar. The basicity and steric hindrance of anion play a significant role in promoting amine group to capture two CO 2 . [P 66614 ] 2 [Asp] with dual anion was further designed and synthesized to promote PT process, which showed high capacity of 1.96 mol/mol IL at 30 C and 1 atm as well as excellent reversibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.