In this paper, we study the existence of weighted pseudo-almost periodic solutions and the global exponential synchronization of delayed quaternion-valued cellular neural networks (QVCNNs). Firstly, we use the Banach fixed point theorem to establish the existence of weighted pseudo-almost periodic solutions for this class of QVCNNs. Then, under the condition that the drive system has a unique weighted pseudo-almost periodic solution, by designing a state-feedback controller and constructing suitable Lyapunov functions, we see that the drive-response structure of delayed QVCNNs with weighted pseudo-almost periodic coefficients achieve global exponential synchronization. Finally, a numerical example is given to illustrate the feasibility of our results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.