The study is the first to report the application of nonviral vector SD to co-transfect DC with gp100 and CCR7-coding plasmid to induce both the capacity of antigen presentation and lymph node targeting.
We have previously developed a novel adenovirus vector (Adv) that targeted tumor tissues/vasculatures after systemic administration. The surface of this Adv is conjugated with CGKRK tumor homing peptide by the cross-linking reaction of polyethyleneglycol (PEG). In this study, we showed that the condition of PEG modification was important to minimize the gene expression in normal tissues after systemic treatment. When Adv was modified only with PEG-linked CGKRK, its luciferase expression was enhanced even in the liver tissue, as well as the tumor tissue. However, in the reaction with the mixture of non-cross-linking PEG and PEG-linked CGKRK, we found out that the best modification could suppress its gene expression in the liver, without losing that in the tumor. We also studied the internalization mechanisms of CGKRK-conjugated Adv. Results suggested that there is a specific interaction of the CGKRK peptide with a receptor at the cell surface enabling efficient internalization of CGKRK-conjugated Adv. The presence of cell-surface heparan sulfate is important receptor for the cellular binding and uptake of CGKRK-conjugated Adv. Moreover, macropinocytosis-mediated endocytosis is also important in endocytosis of CGKRK-conjugated Adv, aside from clathrin-mediated and caveolae-mediated endocytosis. These results could help evaluate the potentiality of CGKRK-conjugated Adv as a prototype vector with suitable efficacy and safety for systemic cancer gene therapy.
A dendritic cell (DC) networking system has become an attractive approach in cancer immunotherapy. Successful DC gene engineering depends on the development of transgene vectors. A cationic polymer, chitosan-linked polyethylenimine (PEI) (CP), possessing the advantages of both PEI and chitosan, has been applied in nonviral transfection of DCs. Physicochemical evaluation showed that CP/DNA complexes could form cationic nanoparticles. Compared with DCs transfected with commercial reagent, Lipofectamine2000, it showed higher transfection efficiency and lower cytotoxicity when DCs were transfected with CP/DNA complexes. A nuclear trafficking observation of CP/DNA complexes by a confocal laser scanning microscope further revealed that the CP could help DNA enter into the cytoplasm and finally into the nucleus of a DC. Finally, vaccination of DCs transfected with CP/DNA encoding gp100 slightly improved resistance to the B16BL6 melanoma challenge. This is the first report that CP polymer is used as a nonviral vector for DC gene delivery and DC vaccine. Essentially, these results might be helpful to design a promising nonviral vector for DC gene delivery.
The germinal center (GC) response is essential for generating memory B and long-lived Ab-secreting plasma cells during the T cell–dependent immune response. In the GC, signals via the BCR and CD40 collaboratively promote the proliferation and positive selection of GC B cells expressing BCRs with high affinities for specific Ags. Although a complex gene transcriptional regulatory network is known to control the GC response, it remains elusive how the positive selection of GC B cells is modulated posttranscriptionally. In this study, we show that methyltransferase like 14 (Mettl14)–mediated methylation of adenosines at the position N6 of mRNA (N6-methyladenosine [m6A]) is essential for the GC B cell response in mice. Ablation of Mettl14 in B cells leads to compromised GC B cell proliferation and a defective Ab response. Interestingly, we unravel that Mettl14-mediated m6A regulates the expression of genes critical for positive selection and cell cycle regulation of GC B cells in a Ythdf2-dependent but Myc-independent manner. Furthermore, our study reveals that Mettl14-mediated m6A modification promotes mRNA decay of negative immune regulators, such as Lax1 and Tipe2, to upregulate genes requisite for GC B cell positive selection and proliferation. Thus, our findings suggest that Mettl14-mediated m6A modification plays an essential role in the GC B cell response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.