Alveolar macrophages play a vital role in the development of acute silicosis, but the dynamic changes of M1 and/or M2 phenotypes have not been elucidated. In this study, acute silicosis models of rat were established by a one-time dusting method, and the rats were sacrificed after 1, 3, 7, 14, and 28 days. The polarity states of macrophages were assessed by measuring the M1/M2 marker genes of alveolar macrophages and the M1/M2 marker proteins in bronchoalveolar lavage fluid. The pathological changes of lung tissues were examined with hematoxylin and Eosin and Masson’s trichrome staining. Our results showed that in the early stages, alveolar macrophages were mainly polarized into M1; with time, the polarization of M2 gradually became dominant. Microscopic sections showed significant pathological responses of inflammation and fibrosis. This work suggested that the alteration of alveolar macrophage polarization was involved in the lung pathologic responses to acute silicosis.
Silicosis is a serious occupational disease characterized by pulmonary fibrosis, and its mechanism and progression have not been fully elucidated yet. In this study, silicosis models of rat were established by a one-time dusting method, and the rats were sacrificed after 30, 60, and 120 days (herein referred to as the 30, 60, and 120 days groups, respectively). The rats without dust exposure were used as the control. The lungs were removed to observe pathological changes using hematoxylin and eosin and Masson’s trichrome staining and transmission electron microscopy, and the degree of collagen type I and III deposition in the lung was evaluated by enzyme‐linked immunosorbent assay. The levels of malondialdehyde and superoxide dismutase were measured by spectrophotometry, and the expression levels of fibrosis-related genes (transforming growth factor beta 1, type I collagen, type III collagen) were assessed by real-time quantitative polymerase chain reaction. The results suggested that the rats in the model groups exhibited obvious collagen fibrosis and that the severity of the lung injury increased as the time after exposure to SiO2 increased. There was a significant response to lung inflammation in the model rats, especially in the 30 days group. The degree of lipid peroxidation in bronchoalveolar lavage fluid cells and lung tissues in experiment group rats significantly increased. Among the three fibrosis-related genes, transforming growth factor beta 1was elevated in both bronchoalveolar lavage fluid cells and lung tissues of the experiment group rats, while collagen type I and III were only elevated in lung tissues. Hence, we concluded that as silicosis progressed, inflammation, fibrosis, and the expression of fibrosis-related genes showed different time-dependent changes and that a number of causal relationships existed among them.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.