Nasopharyngeal carcinoma (NPC) is an aggressive malignancy with extremely skewed ethnic and geographic distributions. Increasing evidence indicates that targeting the tumor microenvironment (TME) represents a promising therapeutic approach in NPC, highlighting an urgent need to deepen the understanding of the complex NPC TME. Here, we generated single-cell transcriptome profiles for 7581 malignant cells and 40,285 immune cells from fifteen primary NPC tumors and one normal sample. We revealed malignant signatures capturing intratumoral transcriptional heterogeneity and predicting aggressiveness of malignant cells. Diverse immune cell subtypes were identified, including novel subtypes such as CLEC9A+ dendritic cells (DCs). We further revealed transcriptional regulators underlying immune cell diversity, and cell–cell interaction analyses highlighted promising immunotherapeutic targets in NPC. Moreover, we established the immune subtype-specific signatures, and demonstrated that the signatures of macrophages, plasmacytoid dendritic cells (pDCs), CLEC9A+ DCs, natural killer (NK) cells, and plasma cells were significantly associated with improved survival outcomes in NPC. Taken together, our findings represent a unique resource providing in-depth insights into the cellular heterogeneity of NPC TME and highlight potential biomarkers for anticancer treatment and risk stratification, laying a new foundation for precision therapies in NPC.
BackgroundSingle-cell resequencing (SCRS) provides many biomedical advances in variations detection at the single-cell level, but it currently relies on whole genome amplification (WGA). Three methods are commonly used for WGA: multiple displacement amplification (MDA), degenerate-oligonucleotide-primed PCR (DOP-PCR) and multiple annealing and looping-based amplification cycles (MALBAC). However, a comprehensive comparison of variations detection performance between these WGA methods has not yet been performed.ResultsWe systematically compared the advantages and disadvantages of different WGA methods, focusing particularly on variations detection. Low-coverage whole-genome sequencing revealed that DOP-PCR had the highest duplication ratio, but an even read distribution and the best reproducibility and accuracy for detection of copy-number variations (CNVs). However, MDA had significantly higher genome recovery sensitivity (~84 %) than DOP-PCR (~6 %) and MALBAC (~52 %) at high sequencing depth. MALBAC and MDA had comparable single-nucleotide variations detection efficiency, false-positive ratio, and allele drop-out ratio. We further demonstrated that SCRS data amplified by either MDA or MALBAC from a gastric cancer cell line could accurately detect gastric cancer CNVs with comparable sensitivity and specificity, including amplifications of 12p11.22 (KRAS) and 9p24.1 (JAK2, CD274, and PDCD1LG2).ConclusionsOur findings provide a comprehensive comparison of variations detection performance using SCRS amplified by different WGA methods. It will guide researchers to determine which WGA method is best suited to individual experimental needs at single-cell level.Electronic supplementary materialThe online version of this article (doi:10.1186/s13742-015-0068-3) contains supplementary material, which is available to authorized users.
Integrative analysis of multi-omics layers at single cell level is critical for accurate dissection of cell-to-cell variation within certain cell populations. Here we report scCAT-seq, a technique for simultaneously assaying chromatin accessibility and the transcriptome within the same single cell. We show that the combined single cell signatures enable accurate construction of regulatory relationships between cis-regulatory elements and the target genes at single-cell resolution, providing a new dimension of features that helps direct discovery of regulatory patterns specific to distinct cell identities. Moreover, we generate the first single cell integrated map of chromatin accessibility and transcriptome in early embryos and demonstrate the robustness of scCAT-seq in the precise dissection of master transcription factors in cells of distinct states. The ability to obtain these two layers of omics data will help provide more accurate definitions of “single cell state” and enable the deconvolution of regulatory heterogeneity from complex cell populations.
BackgroundCancers arise through an evolutionary process in which cell populations are subjected to selection; however, to date, the process of bladder cancer, which is one of the most common cancers in the world, remains unknown at a single-cell level.ResultsWe carried out single-cell exome sequencing of 66 individual tumor cells from a muscle-invasive bladder transitional cell carcinoma (TCC). Analyses of the somatic mutant allele frequency spectrum and clonal structure revealed that the tumor cells were derived from a single ancestral cell, but that subsequent evolution occurred, leading to two distinct tumor cell subpopulations. By analyzing recurrently mutant genes in an additional cohort of 99 TCC tumors, we identified genes that might play roles in the maintenance of the ancestral clone and in the muscle-invasive capability of subclones of this bladder cancer, respectively.ConclusionsThis work provides a new approach of investigating the genetic details of bladder tumoral changes at the single-cell level and a new method for assessing bladder cancer evolution at a cell-population level.
Previous studies have demonstrated focal but limited molecular similarities between circulating tumor cells (CTCs) and biopsies using isolated genetic assays. We hypothesized that molecular similarity between CTCs and tissue exists at the single cell level when characterized by whole genome sequencing (WGS). By combining the NanoVelcro CTC Chip with laser capture microdissection (LCM), we developed a platform for single-CTC WGS. We performed this procedure on CTCs and tissue samples from a patient with advanced prostate cancer who had serial biopsies over the course of his clinical history. We achieved 30X depth and ≥ 95% coverage. Twenty-nine percent of the somatic single nucleotide variations (SSNVs) identified were founder mutations that were also identified in CTCs. In addition, 86% of the clonal mutations identified in CTCs could be traced back to either the primary or metastatic tumors. In this patient, we identified structural variations (SVs) including an intrachromosomal rearrangement in chr3 and an interchromosomal rearrangement between chr13 and chr15. These rearrangements were shared between tumor tissues and CTCs. At the same time, highly heterogeneous short structural variants were discovered in PTEN, RB1, and BRCA2 in all tumor and CTC samples. Using high-quality WGS on single-CTCs, we identified the shared genomic alterations between CTCs and tumor tissues. This approach yielded insight into the heterogeneity of the mutational landscape of SSNVs and SVs. It may be possible to use this approach to study heterogeneity and characterize the biological evolution of a cancer during the course of its natural history.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.