Viral replication is a process that involves an extremely high turnover of cellular molecules. Since viruses depend on the host cell to obtain the macromolecules needed for their proper replication, they have evolved numerous strategies to shape cellular metabolism and the biosynthesis machinery of the host according to their specific needs. Technologies for the rigorous analysis of metabolic alterations in cells have recently become widely available and have greatly expanded our knowledge of these crucial host–pathogen interactions. We have learned that most viruses enhance specific anabolic pathways and are highly dependent on these alterations. Since uninfected cells are far more plastic in their metabolism, targeting of the virus-induced metabolic alterations is a promising strategy for specific antiviral therapy and has gained great interest recently. In this review, we summarize the current advances in our understanding of metabolic adaptations during viral infections, with a particular focus on the utilization of this information for therapeutic application.
Rhinoviruses (RVs) are responsible for the majority of upper airway infections; despite their high prevalence and the resulting economic burden, effective treatment is lacking. We report here that RV induces metabolic alterations in host cells, which offer an efficient target for antiviral intervention. We show that RV-infected cells rapidly up-regulate glucose uptake in a PI3K-dependent manner. In parallel, infected cells enhance the expression of the PI3K-regulated glucose transporter GLUT1. In-depth metabolomic analysis of RV-infected cells revealed a critical role of glucose mobilization from extracellular and intracellular pools via glycogenolysis for viral replication. Infection resulted in a highly anabolic state, including enhanced nucleotide synthesis and lipogenesis. Consistently, we observed that glucose deprivation from medium and via glycolysis inhibition by 2-deoxyglucose (2-DG) potently impairs viral replication. Metabolomic analysis showed that 2-DG specifically reverts the RV-induced anabolic reprogramming. In addition, treatment with 2-DG inhibited RV infection and inflammation in a murine model. Thus, we demonstrate that the specific metabolic fingerprint of RV infection can be used to identify new targets for therapeutic intervention.
Anakinra in combination with IVIG and/or CS resulted in a hospital survival rate of 50% in 8 critically ill adult patients with HLH despite a vast degree of organ dysfunction and the need for aggressive ICU treatment. Further research on non-etoposide-based treatment strategies for HLH in critically ill adults is warranted.
T cells must tightly regulate their metabolic processes to cope with varying bioenergetic demands depending on their state of differentiation. The metabolic sensor AMPK is activated in states of low energy supply and modulates cellular metabolism toward a catabolic state. Although this enzyme is known to be particularly active in regulatory T (T) cells, its impact on T helper (T)-cell differentiation is poorly understood. We investigated the impact of several AMPK activators on T-cell differentiation and found that the direct activator AICAR (5-aminoimidazole-4-carboxamide ribonucleotide), but not the indirect activators metformin and 2-deoxyglucose, strongly enhanced T-cell induction by specifically enhancing T-cell expansion. Conversely, T17 generation was impaired by the agent. Further investigation of the metabolic background of our observations revealed that AICAR enhanced both cellular mitochondrogenesis and fatty acid uptake. Consistently, increased T induction was entirely reversible on inhibition of fatty acid oxidation, thus confirming the dependence of AICAR's effects on metabolic pathways alterations. Translating our findings to an in vivo model, we found that the substance enhanced T cell generation on IL-2 complex-induced immune stimulation. We provide a previously unrecognized insight into the delicate interplay between immune cell function and metabolism and delineate a potential novel strategy for metabolism-targeting immunotherapy.-Gualdoni, G. A., Mayer, K. A., Göschl, L., Boucheron, N., Ellmeier, W., Zlabinger, G. J. The AMP analog AICAR modulates the T/T17 axis through enhancement of fatty acid oxidation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.