Removal of detergent from mixed micelles of egg yolk phosphatidylcholine and octyl glucoside leads to formation of unilamellar phospholipid vesicles with a diameter of about 230 nm. The same procedure applied to mixed micelles containing the transmembrane protein glycophorin A, in addition to lipid and detergent, produces vesicles of the same size with glycophorin incorporated into the bilayer. The pure lipid vesicles are highly impermeable to both anions and cations, and incorporation of up to 220 molecules of glycophorin per vesicle has little effect on permeability.
The Xenopus laevis oocyte is widely used to express exogenous channels and transporters and is well suited for functional measurements including currents, electrolyte and nonelectrolyte fluxes, water permeability and even enzymatic activity. It is difficult, however, to transform functional measurements recorded in whole oocytes into the capacity of a single channel or transporter because their number often cannot be estimated accurately. We describe here a method of estimating the number of exogenously expressed channels and transporters inserted in the plasma membrane of oocytes. The method is based on the facts that the P (protoplasmic) face in water-injected control oocytes exhibit an extremely low density of endogenous particles (212 +/- 48 particles/microns2, mean, SD) and that exogenously expressed channels and transporters increased the density of particles (up to 5,000/microns2) only on the P face. The utility and generality of the method were demonstrated by estimating the "gating charge" per particle of the Na+/glucose cotransporter (SGLT1) and a nonconducting mutant of the Shaker K+ channel proteins, and the single molecule water permeability of CHIP (Channel-like In-tramembrane Protein) and MIP (Major Intrinsic Protein). We estimated a "gating charge" of approximately 3.5 electronic charges for SGLT1 and approximately 9 for the mutant Shaker K+ channel from the ratio of Qmax to density of particles measured on the same oocytes. The "gating charges" were 3-fold larger than the "effective valences" calculated by fitting a Boltzmann equation to the same charge transfer data suggesting that the charge movement in the channel and cotransporter occur in several steps. Single molecule water permeabilities (pfs) of 1.4 x 10(-14) cm3/sec for CHIP and of 1.5 x 10(-16) cm3/sec for MIP were estimated from the ratio of the whole-oocyte water permeability (Pf) to the density of particles. Therefore, MIP is a water transporter in oocytes, albeit approximately 100-fold less effective than CHIP.
An 18-A resolution map of the 'gap junction' has been obtained by electron microscopy. The protein oligomer in the junctional membranes, the 'connexon', is a cyclinder composed of six subunits which are titled around its axis. Analysis of two different subunit configurations suggests how the connexon might regulate the passage of small molecules between cell interiors.
We have used freeze-fracture electron microscopy to examine the oligomeric structure and molecular asymmetry of integral plasma membrane proteins. Recombinant plasma membrane proteins were functionally expressed in Xenopus laevis oocytes, and the dimensions of their freezefracture particles were analyzed. To characterize the freezefracture particles, we compared the particle cross-sectional area of proteins with ␣-helical transmembrane domains (opsin, aquaporin 1, and a connexin) with their area obtained from existing maps calculated from two-dimensional crystals. We show that the cross-sectional area of the freeze-fracture particles corresponds to the area of the transmembrane domain of the protein, and that the protein cross-sectional area varies linearly with the number membrane-spanning helices. On average, each helix occupies 1.40 ؎ 0.03 nm 2 . By using this information, we examined members from three classes of plasma membrane proteins: two ion channels, the cystic fibrosis transmembrane conductance regulator and connexin 50 hemi-channel; a water channel, the major intrinsic protein (the aquaporin 0); and a cotransporter, the Na ؉ ͞glucose cotransporter. Our results suggest that the cystic fibrosis transmembrane conductance regulator is a dimer containing 25 ؎ 2 transmembrane helices, connexin 50 is a hexamer containing 24 ؎ 3 helices, the major intrinsic protein is a tetramer containing 24 ؎ 3 helices, and the Na ؉ ͞glucose cotransporter is an asymmetrical monomer containing 15 ؎ 2 helices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.