Tripartite sporopollenin microcapsules prepared from pine pollen (Pinus sylvestris L. and Pinus nigra Arnold) were analysed with respect to the permeability of the different strata of the exine which surround the gametophyte and form the sacci. The sexine at the surface of the sacci is highly permeable for polymer molecules and latex particles with a diameter of up to 200 nm, whereas the nexine covering the gametophyte is impermeable for dextran molecules, with a Stokes' radius > or =4 nm (Dextran T 70), and for the tetravalent anionic dye Evans Blue (Stokes' radius = 1.3 nm). The central capsules obtained by dissolution of the sporoplasts showed strictly membrane-controlled exchange of non-electrolytes, with half-equilibration times in the range of minutes (monosaccharides, oligosaccharides) to hours (dextran molecules with Stokes' radii up to 2.5 nm). The dependence of the permeability coefficients of the nexine for non-electrolytes on Stokes' radius or molecular weight shows that the aqueous pores through the nexine are inhomogeneous with respect to their size, and that most pores are too narrow for free diffusion of sugar molecules. To explain the barrier function of the nexine for Evans Blue, it is assumed that at least the larger pores, which enable slow permeation of dextran molecules, contain negative charges.
The pine exine is easily wetted with water and does not represent a significant barrier to water exchange either liquid or gaseous. Through osmotic burst, it can be separated from the intine. The effect of salts and small solute molecules on water fluxes may be functionally significant for rehydration upon pollination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.