The Budyko curve is an empirical relation among evapotranspiration, potential evapotranspiration and precipitation observed across a variety of landscapes and biomes around the world. Using data from more than three hundred catchments and a simple water balance model, the Budyko curve is inverted to explore the ecohydrological controls of the soil water balance. Comparing the results across catchments reveals that aboveground transpiration efficiency and belowground rooting structure have adapted to the dryness index and the phase lag between peak seasonal radiation and precipitation. The vertical and/or lateral extent of the rooting zone exhibits a maximum in semi‐arid catchments or when peak radiation and precipitation are out of phase. This demonstrates plant strategies in Mediterranean climates in order to cope with water stress: the deeper rooting structure buffers the phase difference between precipitation and radiation. Results from this study can be used to constrain land‐surface parameterizations in ungauged basins or general circulation models.
Soil moisture influences fluxes of heat and moisture originating at the land surface, thus altering atmospheric humidity and temperature profiles. However, empirical and modeling studies disagree on how this affects the propensity for precipitation, mainly owing to the difficulty in establishing causality. We use Granger causality to estimate the relationship between soil moisture and occurrence of subsequent precipitation over the contiguous United States using remotely sensed soil moisture and gauge-based precipitation observations. After removing potential confounding effects of daily persistence, and seasonal and interannual variability in precipitation, we find that soil moisture anomalies significantly influence rainfall probabilities over 38% of the area with a median factor of 13%. The feedback is generally positive in the west and negative in the east, suggesting dependence on regional aridity.
Land surface energetic partitioning between latent, sensible, and ground heat fluxes determines climate and influences the terrestrial segment of land-atmosphere coupling. Soil moisture, among other variables, has a direct influence on this partitioning. Dry surfaces characterize a water-limited regime where evapotranspiration and soil moisture are coupled. This coupling is subdued for wet surfaces, or an energy-limited regime. This framework is commonly evaluated using the evaporative fraction--soil moisture relationship. However, this relationship is explicitly or implicitly prescribed in land surface models. These impositions, in turn, confound model-based evaluations of energetic partitioning--soil moisture relationships. In this study, we use satellite-based observations of surface temperature diurnal amplitude (directly related to available energy partitioning) and soil moisture, free of model impositions, to estimate characteristics of surface energetic partitioning--soil moisture relationships during 10--20-day surface drying periods across Africa. We specifically estimate the spatial patterns of water-limited energy flux sensitivity to soil moisture (m) and the soil moisture threshold separating water and energy-limited regimes (θ*). We also assess how time evolution of other factors (e.g., solar radiation, vapor pressure deficit, surface albedo, and wind speed) can confound the energetic partitioning--soil moisture relationship. We find higher m in drier regions and interestingly similar spatial θ* distributions across biomes. Vapor pressure deficit and insolation increases during drying tend to increase m. Only vapor pressure deficit increases in the Sahelian grasslands systematically decrease θ*. Ultimately, soil and atmospheric moisture availability together play the largest role in land surface energy partitioning with minimal consistent influences of time evolution of other forcings.Plain Language Summary Whether available, incoming solar energy is used for evaporating surface water, or surface heating largely depends on water availability across the landscape. Under dry conditions (water limitation), increasing soil moisture increases evaporation and surface cooling. In this regime, droughts and heatwaves can be initiated and sustained because drying is positively reinforced. Under wetter conditions (energy limitation), increasing soil moisture does not generally influence evaporation. Climate models rely on these soil moisture-evaporation relationships to describe associations between water and energy cycles and predict future climate. However, due to difficulty observing evaporation at large scales, these relationships assume different forms across climate models which contribute to divergences and uncertainty in making climate projections. We use satellite observations of soil moisture and daily temperature range (quantifying surface heating; inversely related to evaporation) to evaluate these relationships free of model impositions across Africa. Following rain events during surface drying, da...
We use dissolved silicon together with its “geochemical twin” germanium for the first time as a hydrologic tracer to study water delivery to the stream during storm events in the Rio Icacos watershed, Puerto Rico. Ge and Si were measured on base flow, stormflow, springwater, and soil water samples. Compositions of all of these waters appear to reflect varying contributions from three components, which we attribute to solutes released from bedrock weathering (groundwater), from short‐term soil‐water interaction (quick soil water), and longer‐term soil‐water interaction (matrix soil water). Base flow stream waters have high Si and moderate Ge (Ge/Si ratio ∼0.29 μmol/mol), consistent with a predominantly bedrock weathering source as indicated by their similarity with water sampled from springs emerging from the saprolite‐bedrock boundary on a hillslope landslide scar. During storm events there is a shift toward more dilute compositions (but higher Ge/Si ratios) similar to those measured on water samples from temporary depression storage and overland flow (quick soil water). Geochemical mass balance shows that 80%–90% of the stream chemistry can be explained by mixing groundwater with this quick soil water composition, which we infer to reflect new water traveling as shallow throughflow. Stream water δ18O values decrease to more negative values typical of precipitation supporting rapid delivery of rainwater to the stream channel during stormflow. The third component, with a Ge‐rich composition characteristic of soil matrix water sampled by tension lysimeters, is required to explain higher stream water Ge/Si ratios measured during hydrograph recession. We infer from this an additional, slower, and less dominant pathway for delivery of soil water to the stream channel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.