Micro Aerial Vehicles (MAVs) are very suitable for flying in indoor environments, but autonomous navigation is challenging due to their strict hardware limitations. This paper presents a highly efficient computer vision algorithm called Edge-FS for the determination of velocity and depth. It runs at 20 Hz on a 4 g stereo camera with an embedded STM32F4 microprocessor (168 MHz, 192 kB) and uses edge distributions to calculate optical flow and stereo disparity. The stereo-based distance estimates are used to scale the optical flow in order to retrieve the drone's velocity. The velocity and depth measurements are used for fully autonomous flight of a 40 g pocket drone only relying on on-board sensors. This method allows the MAV to control its velocity and avoid obstacles.
Deep neural networks have lead to a breakthrough in depth estimation from single images. Recent work often focuses on the accuracy of the depth map, where an evaluation on a publicly available test set such as the KITTI vision benchmark is often the main result of the article. While such an evaluation shows how well neural networks can estimate depth, it does not show how they do this. To the best of our knowledge, no work currently exists that analyzes what these networks have learned.In this work we take the MonoDepth network by Godard et al. and investigate what visual cues it exploits for depth estimation. We find that the network ignores the apparent size of known obstacles in favor of their vertical position in the image. Using the vertical position requires the camera pose to be known; however we find that MonoDepth only partially corrects for changes in camera pitch and roll and that these influence the estimated depth towards obstacles. We further show that MonoDepth's use of the vertical image position allows it to estimate the distance towards arbitrary obstacles, even those not appearing in the training set, but that it requires a strong edge at the ground contact point of the object to do so. In future work we will investigate whether these observations also apply to other neural networks for monocular depth estimation.
Autonomous Drone Racing (ADR) is a challenge for autonomous drones to navigate a cluttered indoor environment without relying on any external sensing in which all the sensing and computing must be done on board. Although no team could complete the whole racing track so far, most successful teams implemented waypoint tracking methods and robust visual recognition of the gates of distinct colors because the complete environmental information was given to participants before the events. In this paper, we introduce the purpose of ADR as a benchmark testing ground for autonomous drone technologies and analyze the challenges and technologies used in the two previous ADRs held in IROS 2016 and IROS 2017. Six teams that participated in these events present their implemented technologies that cover modifyed ORBSLAM, robust alignment method for waypoints deployment, sensor fusion for motion estimation, deep learning for gate detection and motion control, and stereo-vision for gate detection.
This work presents a review and discussion of the challenges that must be solved in order to successfully develop swarms of Micro Air Vehicles (MAVs) for real world operations. From the discussion, we extract constraints and links that relate the local level MAV capabilities to the global operations of the swarm. These should be taken into account when designing swarm behaviors in order to maximize the utility of the group. At the lowest level, each MAV should operate safely. Robustness is often hailed as a pillar of swarm robotics, and a minimum level of local reliability is needed for it to propagate to the global level. An MAV must be capable of autonomous navigation within an environment with sufficient trustworthiness before the system can be scaled up. Once the operations of the single MAV are sufficiently secured for a task, the subsequent challenge is to allow the MAVs to sense one another within a neighborhood of interest. Relative localization of neighbors is a fundamental part of self-organizing robotic systems, enabling behaviors ranging from basic relative collision avoidance to higher level coordination. This ability, at times taken for granted, also must be sufficiently reliable. Moreover, herein lies a constraint: the design choice of the relative localization sensor has a direct link to the behaviors that the swarm can (and should) perform. Vision-based systems, for instance, force MAVs to fly within the field of view of their camera. Range or communication-based solutions, alternatively, provide omni-directional relative localization, yet can be victim to unobservable conditions under certain flight behaviors, such as parallel flight, and require constant relative excitation. At the swarm level, the final outcome is thus intrinsically influenced by the on-board abilities and sensors of the individual. The real-world behavior and operations of an MAV swarm intrinsically follow in a bottom-up fashion as a result of the local level limitations in cognition, relative knowledge, communication, power, and safety. Taking these local limitations into account when designing a global swarm behavior is key in order to take full advantage of the system, enabling local limitations to become true strengths of the swarm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.