This paper reports an implantable transcutaneous telemetry for a brain machine interface that uses a novel optical communication system to achieve a highly energy-efficient link. Based on an pulse-based coding scheme, the system uses subnanosecond laser pulses to achieve data rates up to 300 Mbps with relatively low power levels when compared to other methods of wireless communication. This has been implemented using a combination of discrete components (semiconductor laser and driver, fast-response Si photodiode and interface) integrated at board level together with reconfigurable logic (encoder, decoder and processing circuits implemented using Xilinx KCU105 board with Kintex UltraScale FPGA). Experimental validation has been performed using a tissue sample that achieves representative level of attenuation/scattering (porcine skin) in the optical path. Results reveal that the system can operate at data rates up to 300 Mbps with a bit error rate (BER) of less than 10-10 , and an energy efficiency of 37 pJ/bit. This can communicate, for example, 1,024 channels of broadband neural data sampled at 18 kHz, 16bit with only 11 mW power consumption.
This paper reports on a pulsed coding technique based on optical Ultra-wideband (UWB) modulation for wireless implantable biotelemetry systems allowing for high data rate link whilst enabling significant power reduction compared to the state-of-the-art. This optical data coding approach is suitable for emerging biomedical applications like transcutaneous neural wireless communication systems. The overall architecture implementing this optical modulation technique employs sub-nanosecond pulsed laser as the data transmitter and small sensitive area photodiode as the data receiver. Moreover, it includes coding and decoding digital systems, biasing and driving analogue circuits for laser pulse generation and photodiode signal conditioning. The complete system has been implemented on Field-Programmable Gate Array (FPGA) and prototype Printed Circuit Board (PCB) with discrete off-the-shelf components. By inserting a diffuser between the transmitter and the receiver to emulate skin/tissue, the system is capable to achieve a 128 Mbps data rate with a bit error rate less than 10 −9 and an estimated total power consumption of about 5 mW corresponding to a power efficiency of 35.9 pJ/bit. These results could allow, for example, the transmission of an 800-channel neural recording interface sampled at 16 kHz with 10-bit resolution.
This paper presents an optical communication system, implementing a UWB-inspired pulsed coding technique, for emerging high throughput bio-applications such as brain machine interfaces. The proposed solution employs sub-nanosecond laser pulses that, compared to the state-of-the-art, allows for high bit rate transmissions and reduced power consumption. The overall architecture consist of a transmitter and receiver that employ a pulsed semiconductor laser and a small sensitive area photodiode. This can allow for CMOS integration into a compact silicon footprint (estimated lower than 1 mm 2 in a 0.18 µm technology). The analogue circuits presented herein have been implemented using discrete off-the-shelf components. These provide the bias and drive signals for laser pulse generation, photodiode signal detection and conditioning. Moreover, the digital subsystem for data coding and decoding processes have been implemented on a FPGA board through VHDL description language. Experimental results validate the overall functionality of the proposed system using a diffuser between transmitter and receiver to emulate skin/tissue. This shows the capability of operating at bit rates up to 250 Mbps achieving BER less than 10 −9 and power efficiency as low as 24 pJ/bit. These results enable, for example, the transmission of a 1000-channel neural recording system sampled at 16kHz with 16-bit resolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.