The absence of piezoelectricity in silicon makes direct electromechanical applications of this mainstream semiconductor impossible. Integrated electrical control of the silicon mechanics, however, would open up new perspectives for on-chip actuorics. Here, we combine wafer-scale nanoporosity in single-crystalline silicon with polymerization of an artificial muscle material inside pore space to synthesize a composite that shows macroscopic electrostrain in aqueous electrolyte. The voltage-strain coupling is three orders of magnitude larger than the best-performing ceramics in terms of piezoelectric actuation. We trace this huge electroactuation to the concerted action of 100 billions of nanopores per square centimeter cross section and to potential-dependent pressures of up to 150 atmospheres at the single-pore scale. The exceptionally small operation voltages (0.4 to 0.9 volts), along with the sustainable and biocompatible base materials, make this hybrid promising for bioactuator applications.
Frozen transient imbibition states in arrays of straight cylindrical pores 400 nm in diameter were imaged by phase-contrast X-ray computed tomography with single-pore resolution. A semiautomatic algorithm yielding brightness profiles along all pores identified within the probed sample volume is described. Imbibition front positions are determined by descriptive statistics. A first approach involves the evaluation of frequency densities of single-pore imbibition lengths, and a second one involves the evaluation of the statistical brightness dispersion within the probed volume as a function of the distance from the pore mouths. We plotted average imbibition front positions against systematically varied powers of the imbibition time and determined the optimal exponent of the imbibition time by considering the correlation coefficients of the corresponding linear fits. Thus, slight deviations from the proportionality of the average imbibition front position to the square root of the imbibition time predicted by the Lucas–Washburn theory were found. A meaningful pre-exponential factor in the power law relating imbibition front position and imbibition time may only be determined after ambiguities regarding the exponent of the imbibition time are resolved. The dispersion of peaks representing the imbibition front in frequency densities of single-pore imbibition lengths and in brightness dispersion profiles plotted against the pore depth is suggested as measure of the imbibition front width. Phase-contrast X-ray computed tomography allows the evaluation of a large number of infiltrated submicron pores taking advantage of phase-contrast imaging; artifacts related to sample damage by tomography requiring physical ablation of sample material are avoided.
When a macroscopic droplet spreads, a thin precursor film of liquid moves ahead of the advancing liquid-solid-vapor contact line. Whereas this phenomenon has been explored extensively for planar solid substrates, its presence in nanostructured geometries has barely been studied so far, despite its importance for many natural and technological fluid transport processes. Here we use porous photonic crystals in silicon to resolve by light interferometry capillarity-driven spreading of liquid fronts in pores of few nanometers in radius. Upon spatiotemporal rescaling the fluid profiles collapse on master curves indicating that all imbibition fronts follow a square-root-of-time broadening dynamics. For the simple liquid (glycerol) a sharp front with a widening typical of Lucas-Washburn capillary-rise dynamics in a medium with pore-size distribution occurs. By contrast, for a polymer (PDMS) a precursor film moving ahead of the main menisci entirely alters the nature of the nanoscale transport, in agreement with predictions of computer simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.