Background: Salivary biomarkers for systemic diseases have been undermined due to lack of mechanistic and biological rationale. Results: Suppression of exosome biogenesis leads to ablation of salivary biomarkers. Conclusion: Tumor-derived exosomes provide a mechanism for discriminatory biomarkers in saliva. Significance: Tumor-derived exosomes provide the scientific rationale that connects pancreatic tumors and the oral cavity leading to salivary biomarkers.
Scutellaria baicalensis (SB) and SB-derived polyphenols possess anti-proliferative activities in several cancers, including pancreatic cancer (PaCa). However, the precise molecular mechanisms have not been fully defined. SB extract and SB-derived polyphenols (wogonin, baicalin, and baicalein) were used to determine their anti-proliferative mechanisms. Baicalein significantly inhibited the proliferation of PaCa cell lines in a dose-dependent manner, whereas wogonin and baicalin exhibited a much less robust effect. Treatment with baicalein induced apoptosis with release of cytochrome c from mitochondria, and activation of caspase-3 and -7 and PARP. The general caspase inhibitor zVAD-fmk reversed baicalein-induced apoptosis, indicating a caspase-dependent mechanism. Baicalein decreased expression of Mcl-1, an anti-apoptotic member of the Bcl-2 protein family, presumably through a transcriptional mechanism. Genetic knockdown of Mcl-1 resulted in marked induction of apoptosis. The effect of baicalein on apoptosis was significantly attenuated by Mcl-1 over-expression, suggesting a critical role of Mcl-1 in this process. Our results provide evidence that baicalein induces apoptosis in pancreatic cancer cells through down-regulation of the anti-apoptotic Mcl-1 protein.
Mutations of the RET proto-oncogene are responsible for several inherited human diseases and may function as genetic modifiers of the disease. However, the role of RET mutations in pancreatic cancer has not been studied. Expression of the glial cell line-derived neurotrophic factor (GDNF) receptors RET and GDNF family receptor A1 (GFRA1) in human pancreatic cancer cells was determined by Western blot, immunofluorescence, and flow cytometry. The effect of GDNF on cell proliferation and invasion was assessed. Small interfering RNA and antibodies were used to evaluate the involvement of RET. The G691S RET polymorphism was analyzed by sequencing and restriction analysis. The modifying effect of G691S RET on GDNF-induced invasion and mitogen-activated protein kinase (MAPK) signaling was evaluated. Transfection studies with wild-type and mutated RET determined the functional role of the G691S polymorphism. Pancreatic cancer specimens and matched tissues were analyzed for the presence of the G691S RET polymorphism. GDNF receptors were found on all cell lines. GDNF increased pancreatic cancer cell proliferation and invasion, which was mediated by RET. The effect of GDNF was more profound in cells with the G691S RET polymorphism (P < 0.01). G691S RET correlated with an enhanced activation of the downstream extracellular signal-regulated kinase pathway. Overexpression of G691S RET increased pancreatic cancer cell invasion. The G691S RET polymorphism was also detected in human pancreatic tumors and represented a somatic mutation in some patients. These findings indicate that the G691S RET single nucleotide polymorphism may directly correlate with the aggressive growth of pancreatic cancers and may function as a genetic modifier or even lowpenetrance gene. (Cancer Res 2005; 65(24): 11536-44)
There are approximately 277 000 new cases of pancreatic cancer and 266 000 deaths from pancreatic cancer annually, indicating a mortality rate of 96% of the cases diagnosed. Because of the ineffectiveness of therapies, a major emphasis needs to be placed on prevention. This paper reviews the epidemiology and risk factors for pancreatic cancer, and uses this information to propose plausible research directions for determining the biological mechanisms mediating the effects of risk factors on the promotion of pancreatic cancer, with a focus on the pancreatic stellate cell.
BACKGROUND & AIMS
The kinase Akt mediates resistance of pancreatic cancer (PaCa) cells to death and is constitutively active (phosphorylated) in cancer cells. Whereas the kinases that activate Akt are well characterized, less is known about phosphatases that dephosporylate and thereby inactivate it. We investigated regulation of Akt activity and cell death by the phosphatases PHLPP1 and PHLPP2 in PaCa cells, mouse models of PaCa, and human pancreatic ductal adenocarcinoma (PDAC).
METHODS
We measured the effects of PHLPP overexpression or knockdown with small interfering RNAs on Akt activation and cell death. We examined regulation of PHLPPs by growth factors and reactive oxygen species, as well as associations between PHLPPs and tumorigenesis.
RESULTS
PHLPP overexpression inactivated Akt, whereas PHLPP knockdown increased phosphorylation of Akt in PaCa cells. Levels of PHLPPs were greatly reduced in human PDAC and in mouse genetic and xenograft models of PaCa. PHLPP activities in PaCa cells were down-regulated by growth factors and Nox4 reduced nicotinamide adenine dinucleotide phosphate oxidase. PHLPP1 selectively dephosphorylated Akt2, whereas PHLPP2 selectively dephosphorylated Akt1. Akt2, but not Akt1, was up-regulated in PDAC, and Akt2 levels correlated with mortality. Consistent with these results, high levels of PHLPP1, which dephosphorylates Akt2 (but not PHLPP2, which dephosphorylates Akt1), correlated with longer survival times of patients with PDAC. In mice, xenograft tumors derived from PaCa cells that overexpress PHLPP1 (but not PHLPP2) had inactivated Akt, greater extent of apoptosis, and smaller size.
CONCLUSIONS
PHLPP1 has tumor suppressive activity and might represent a therapeutic or diagnostic tool for PDAC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.