We consider a stochastic volatility model where the dynamics of the volatility are described by linear functions of the (time extended) signature of a primary underlying process, which is supposed to be some multidimensional continuous semimartingale. Under the additional assumption that this primary process is of polynomial type, we obtain closed form expressions for the VIX squared, exploiting the fact that the truncated signature of a polynomial process is again a polynomial process. Adding to such a primary process the Brownian motion driving the stock price, allows then to express both the log-price and the VIX squared as linear functions of the signature of the corresponding augmented process. This feature can then be efficiently used for pricing and calibration purposes. Indeed, as the signature samples can be easily precomputed, the calibration task can be split into an offline sampling and a standard optimization. For both the SPX and VIX options we obtain highly accurate calibration results, showing that this model class allows to solve the joint calibration problem without adding jumps or rough volatility.
We introduce two kinds of risk measures with respect to some reference probability measure, which both allow for a certain order structure and domination property.Analyzing their relation to each other leads to the question when a certain minimax inequality is actually an equality. We then provide conditions under which the corresponding robust risk measures, being defined as the supremum over all risk measures induced by a set of probability measures, can be represented classically in terms of one single probability measure. We focus in particular on the mixture probability measure obtained via mixing over a set of probability measures using some prior, which represents for instance the regulator's beliefs. The classical representation in terms of the mixture probability measure can then be interpreted as a Bayesian approach to robust risk measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.