Avian Influenza (AI) viruses have been sporadically isolated in South America. The most recent reports are from an outbreak in commercial poultry in Chile in 2002 and its putative ancestor from a wild bird in Bolivia in 2001. Extensive surveillance in wild birds was carried out in Argentina during 2006-2007. Using RRT-PCR, 12 AI positive detections were made from cloacal swabs. One of those positive samples yielded an AI virus isolated from a wild kelp gull (Larus dominicanus) captured in the South Atlantic coastline of Argentina. Further characterization by nucleotide sequencing reveals that it belongs to the H13N9 subtype. Phylogenetic analysis of the 8 viral genes suggests that the 6 internal genes are related to the isolates from Chile and Bolivia. The analysis also indicates that a cluster of phylogenetically related AI viruses from South America may have evolved independently, with minimal gene exchange, from influenza viruses in other latitudes. The data produced from our investigations are valuable contributions to the study of AI viruses in South America.
SARS-CoV-2 variants with concerning characteristics have emerged since the end of 2020. Surveillance of SARS-CoV-2 variants was performed on a total of 4,851 samples from the capital city and 10 provinces of Argentina, during 51 epidemiological weeks (EWs) that covered the end of the first wave and the ongoing second wave of the COVID-19 pandemic in the country (EW 44/2020 to EW 41/2021). The surveillance strategy was mainly based on Sanger sequencing of a Spike coding region that allows the identification of signature mutations associated with variants. In addition, whole-genome sequences were obtained from 637 samples. The main variants found were Gamma and Lambda, and to a lesser extent, Alpha, Zeta, and Epsilon, and more recently, Delta. Whereas, Gamma dominated in different regions of the country, both Gamma and Lambda prevailed in the most populated area, the metropolitan region of Buenos Aires. The lineages that circulated on the first wave were replaced by emergent variants in a term of a few weeks. At the end of the ongoing second wave, Delta began to be detected, replacing Gamma and Lambda. This scenario is consistent with the Latin American variant landscape, so far characterized by a concurrent increase in Delta circulation and a stabilization in the number of cases. The cost-effective surveillance protocol presented here allowed for a rapid response in a resource-limited setting, added information on the expansion of Lambda in South America, and contributed to the implementation of public health measures to control the disease spread in Argentina.
Twenty infectious bronchitis virus isolates were recovered from broilers and layers in different outbreaks amongst commercial poultry flocks in different geographic regions of Argentina from 2001 to 2008. The viruses were isolated from the tracheas, lungs, and caecal tonsils of birds that were showing respiratory signs. Further analysis based on their nucleotide and amino acid sequences in hypervariable region (HVR) 1 and the intervening sequence including HVRs 1 and 2 (HVR1/2) of the S1 gene was done to determine the genetic relationships among them and reference strains. Five isolates were highly related to the Massachusetts or Connecticut serotypes, indicating the probability of the detection and isolation of vaccine strains. The other Argentinean isolates formed three separate clusters (A, B and C), distant from the vaccine serotypes, with no correlation between the generated clusters and a geographic pattern. These observations could explain the failure of the Massachusetts serotype vaccination programmes to control IBV in these flocks. In addition, the utilization of HVR1/2 and HVR1 sequences resulted in trees with similar topology but the phylogenetic relationships using HVR1/2 nucleotide sequences were better supported by higher bootstrap values. Therefore, the sequences of the HVR1/2 region are recommended for phylogenetic studies.
A reverse genetics approach was used to identify viral genetic determinants of the differential virulence displayed by two field foot-and-mouth disease virus (FMDV) strains (A/Arg/00 and A/Arg/01) isolated in Argentina during the 2000-2001 epidemics. A molecular clone of A/Arg/01 strain and viral chimeras containing the S-fragment or the internal ribosome entry site (IRES) of A/Arg/00 in the A/Arg/01 backbone were constructed and characterized. The IRES appeared as a determining factor of the lower level of A/Arg/00 replication in cell culture. High-throughput RNA probing revealed structural differences between both IRESs. Translation experiments using either synthetic viral RNAs (in vitro) or bicistronic plasmids (in vivo) showed that these IRESs' activities differ when the viral 3' untranslated region (UTR) is present, suggesting that their function is differentially modulated by this region. This work provides experimental evidence supporting the role of the IRES-3'UTR modulation in determining the level of FMDV replication in field strains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.