In endothelial cells, the expression of the inducible nitric oxide synthase (iNOS) and the resulting high-output nitric oxide synthesis have often been assumed as detrimental to endothelial function, but recent publications have demonstrated a protective role resulting from iNOS espression and activity. To address this question, we used antisense-mediated iNOS knockdown during proinflammatory cytokine challenge in primary endothelial cell cultures and studied endothelial function by monitoring the expression of stress defense genes. Using antisense oligonucleotides, we achieved a block of iNOS protein formation, accompanied by a strong decrease in the expression of the protective stress response genes bcl-2, vascular endothelial growth factor, and heme oxygenase-1 (HO-1). Additionally, cells were also maintained in the presence of limited exogenous substrate concentrations during cytokine challenge, thereby mimicking a situation of low serum arginine level during inflammation. Under these conditions, cytokine addition results in full iNOS protein expression with minimal nitric oxide formation, concomitant with a significant reduction in stress response gene expression and susceptibility to cell death induced by reactive oxygen species. Taken together, our data suggest that cytokine-induced endogenous iNOS expression and activity have key functions in increasing endothelial survival and maintaining function. Thus suppression of iNOS expression or limited substrate supply, as has been reported to occur in atherosclerosis patients, appears to significantly contribute to endothelial dysfunction and death during oxidative stress.
The inhibition of inducible nitric oxide synthase (iNOS) expression via antisense oligonucleotides (AS-ODN) may represent a highly specific tool. Endothelial cells (EC) represent prime candidate cells for in vivo application, and we therefore aimed at optimizing this technique for effectiveness and specificity in primary nontransformed rat EC. EC or L929 fibroblasts were incubated with iNOS-specific ODN optimizing all experimental steps. We find that ODN uptake, as analyzed by fluorescence microscopy and labeled ODN, was absolutely dependent on vehicle presence, and among the vehicles tested, Lipofectin displayed negligible toxicity and good uptake. In addition, omission of serum was also essential, a factor that might limit its use in vivo. Moreover, intranuclear accumulation of AS-ODN appeared crucial for successive inhibition. The impact of ODN on iNOS mRNA, protein, and enzyme activity was specific and resulted in >95% inhibition of protein formation. In conclusion, in this article we provide a protocol for an optimized AS-mediated knockdown, representing a specific and efficient instrument for blocking of iNOS formation and allowing for studying the impact of iNOS expression on endothelial function. We also expose application problems of this technique when working in inflammatory conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.